[Алгоритм оптимизации] Синусно-косинусный алгоритм (SCA) [включая исходный код Matlab, проблема 1308]

MATLAB

Введение в алгоритм синуса и косинуса

Синусно-косинусный алгоритм (SCA) — это новый алгоритм оптимизации роевого интеллекта, который характеризуется меньшим количеством параметров, простой структурой и простотой реализации. Если предположить, что размер популяции равен M, то есть она содержит M особей, а размерность каждой особи равна D, то пространственное положение особи i в j-м измерении выражается как Xij, i∈{1,2,…, M},j∈{ 1,2,…,D}. Во-первых, в пространстве решений случайным образом генерируются начальные позиции M особей, соответствующие размеру популяции. Затем вычисляется значение пригодности каждого человека и записывается текущее оптимальное индивидуальное положение. Наконец, выполните цикл до тех пор, пока условие завершения не будет выполнено, и выведите оптимальное решение. На каждой итерации выражение обновления для отдельной позиции имеет вид在这里插入图片描述Среди них: Xij(t) — составляющая позиции особи i на t-й итерации в j-м измерении; Pj(t) — составляющая текущей оптимальной особи t-й итерации популяции в j-я размерность, r2∈[0, 2π], r3∈[0,2] и r4∈[0,1] — три случайных параметра, r1 — управляющий параметр, уменьшающийся от a до 0 с ростом число итераций, которое может быть выражено как在这里插入图片描述Где: a — константа, t — текущее количество итераций, T — максимальное количество итераций.

2. Часть исходного кода


clear all 
clc

SearchAgents_no=30; % Number of search agents

Function_name='F1'; % Name of the test function that can be from F1 to F23 (Table 1,2,3 in the paper)

Max_iteration=1000; % Maximum numbef of iterations

% Load details of the selected benchmark function
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);

[Best_score,Best_pos,cg_curve]=SCA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);

figure('Position',[284   214   660   290])
%Draw search space
subplot(1,2,1);
func_plot(Function_name);
title('Test function')
xlabel('x_1');
ylabel('x_2');
zlabel([Function_name,'( x_1 , x_2 )'])
grid off

%Draw objective space
subplot(1,2,2);
semilogy(cg_curve,'Color','b')
title('Convergence curve')
xlabel('Iteration');
ylabel('Best flame (score) obtained so far');

axis tight
grid off
box on
legend('SCA')

display(['The best solution obtained by SCA is : ', num2str(Best_pos)]);
display(['The best optimal value of the objective funciton found by SCA is : ', num2str(Best_score)]);

 

function [Destination_fitness,Destination_position,Convergence_curve]=SCA(N,Max_iteration,lb,ub,dim,fobj)

display('SCA is optimizing your problem');

%Initialize the set of random solutions
X=initialization(N,dim,ub,lb);

Destination_position=zeros(1,dim);
Destination_fitness=inf;

Convergence_curve=zeros(1,Max_iteration);
Objective_values = zeros(1,size(X,1));

% Calculate the fitness of the first set and find the best one
for i=1:size(X,1)
    Objective_values(1,i)=fobj(X(i,:));
    if i==1
        Destination_position=X(i,:);
        Destination_fitness=Objective_values(1,i);
    elseif Objective_values(1,i)<Destination_fitness
        Destination_position=X(i,:);
        Destination_fitness=Objective_values(1,i);
    end
    
    All_objective_values(1,i)=Objective_values(1,i);
end

%Main loop
t=2; % start from the second iteration since the first iteration was dedicated to calculating the fitness
while t<=Max_iteration
    
    % Eq. (3.4)
    a = 2;
    Max_iteration = Max_iteration;
    r1=a-t*((a)/Max_iteration); % r1 decreases linearly from a to 0
    
    % Update the position of solutions with respect to destination
    for i=1:size(X,1) % in i-th solution
        for j=1:size(X,2) % in j-th dimension
            
            % Update r2, r3, and r4 for Eq. (3.3)
            r2=(2*pi)*rand();
            r3=2*rand;
            r4=rand();
            
            % Eq. (3.3)
            if r4<0.5
                % Eq. (3.1)
                X(i,j)= X(i,j)+(r1*sin(r2)*abs(r3*Destination_position(j)-X(i,j)));
            else
                % Eq. (3.2)
                X(i,j)= X(i,j)+(r1*cos(r2)*abs(r3*Destination_position(j)-X(i,j)));
            end
            
        end
    end
           

function func_plot(func_name)

[lb,ub,dim,fobj]=Get_Functions_details(func_name);

switch func_name 
    case 'F1' 
        x=-100:2:100; y=x; %[-100,100]
        
    case 'F2' 
        x=-100:2:100; y=x; %[-10,10]
        
    case 'F3' 
        x=-100:2:100; y=x; %[-100,100]
        
    case 'F4' 
        x=-100:2:100; y=x; %[-100,100]
    case 'F5' 
        x=-200:2:200; y=x; %[-5,5]
    case 'F6' 
        x=-100:2:100; y=x; %[-100,100]
    case 'F7' 
        x=-1:0.03:1;  y=x;  %[-1,1]
    case 'F8' 
        x=-500:10:500;y=x; %[-500,500]
    case 'F9' 
        x=-5:0.1:5;   y=x; %[-5,5]    
    case 'F10' 
        x=-20:0.5:20; y=x;%[-500,500]
    case 'F11' 
        x=-500:10:500; y=x;%[-0.5,0.5]
    case 'F12' 
        x=-10:0.1:10; y=x;%[-pi,pi]
    case 'F13' 
        x=-5:0.08:5; y=x;%[-3,1]
    case 'F14' 
        x=-100:2:100; y=x;%[-100,100]
    case 'F15' 
        x=-5:0.1:5; y=x;%[-5,5]
    case 'F16' 
        x=-1:0.01:1; y=x;%[-5,5]
    case 'F17' 
        x=-5:0.1:5; y=x;%[-5,5]
    case 'F18' 
        x=-5:0.06:5; y=x;%[-5,5]
    case 'F19' 
        x=-5:0.1:5; y=x;%[-5,5]
    case 'F20' 
        x=-5:0.1:5; y=x;%[-5,5]        
    case 'F21' 
        x=-5:0.1:5; y=x;%[-5,5]
    case 'F22' 
        x=-5:0.1:5; y=x;%[-5,5]     
    case 'F23' 
        x=-5:0.1:5; y=x;%[-5,5]  
end    

    

L=length(x);
f=[];

for i=1:L
    for j=1:L
        if strcmp(func_name,'F15')==0 && strcmp(func_name,'F19')==0 && strcmp(func_name,'F20')==0 && strcmp(func_name,'F21')==0 && strcmp(func_name,'F22')==0 && strcmp(func_name,'F23')==0
            f(i,j)=fobj([x(i),y(j)]);
        end
        if strcmp(func_name,'F15')==1
            f(i,j)=fobj([x(i),y(j),0,0]);
        end
        if strcmp(func_name,'F19')==1
            f(i,j)=fobj([x(i),y(j),0]);
        end
        if strcmp(func_name,'F20')==1
            f(i,j)=fobj([x(i),y(j),0,0,0,0]);
        end       
        if strcmp(func_name,'F21')==1 || strcmp(func_name,'F22')==1 ||strcmp(func_name,'F23')==1
            f(i,j)=fobj([x(i),y(j),0,0]);
        end          
    end
end



3. Результаты операции

在这里插入图片描述

4. Версия Matlab и ссылки

1 матлаб версия 2014a

2 ссылки[1] Bao Ziyang, Yu Jizhou, Yang Shan, Интеллектуальный алгоритм оптимизации и его пример в MATLAB (2-е издание) [M], Electronic Industry Press, 2016. [2] Zhang Yan, Wu Shuigen, Исходный код алгоритма оптимизации MATLAB [M], Tsinghua University Press, 2017.