Алгоритм рекомендации фильмов на основе Python и Tensorflow

искусственный интеллект TensorFlow Python алгоритм

Шаг 1. Соберите и очистите данные

Канал передачи данных:группа Lens.org/datasets/mo…

Скачать файл: ml-latest-small

import pandas as pd
import numpy as np
import tensorflow as tf

Импортируйте файл ratings.csv

ratings_df = pd.read_csv('./ml-latest-small/ratings.csv')
ratings_df.tail()
#tail命令用于输入文件中的尾部内容。tail命令默认在屏幕上显示指定文件的末尾5行。

результат:

userId movieId rating timestamp
99999 671 6268 2.5 1065579370
100000 671 6269 4.0 1065149201
100001 671 6365 4.0 1070940363
100002 671 6385 2.5 1070979663
100003 671 6565 3.5 1074784724

Импорт файла фильмов.csv

movies_df = pd.read_csv('./ml-latest-small/movies.csv')
movies_df.tail()

результат:

movieId title genres
9120 162672 Mohenjo Daro (2016) Adventure|Drama|Romance
9121 163056 Shin Godzilla (2016) Action|Adventure|Fantasy|Sci-Fi
9122 163949 The Beatles: Eight Days a Week - The Touring Y... Documentary
9123 164977 The Gay Desperado (1936) Comedy
9124 164979 Women of '69, Unboxed Documentary

Замените movieId в movie_df номером строки

movies_df['movieRow'] = movies_df.index
#生成一列‘movieRow’,等于索引值index
movies_df.tail()

результат:

movieId title genres movieRow
9120 162672 Mohenjo Daro (2016) Adventure|Drama|Romance 9120
9121 163056 Shin Godzilla (2016) Action|Adventure|Fantasy|Sci-Fi 9121
9122 163949 The Beatles: Eight Days a Week - The Touring Y... Documentary 9122
9123 164977 The Gay Desperado (1936) Comedy 9123
9124 164979 Women of '69, Unboxed Documentary 9124

Функции фильтра в movie_df

movies_df = movies_df[['movieRow','movieId','title']]
#筛选三列出来
movies_df.to_csv('./ml-latest-small/moviesProcessed.csv', index=False, header=True, encoding='utf-8')
#生成一个新的文件moviesProcessed.csv
movies_df.tail()

результат:

movieRow movieId title
9120 9120 162672 Mohenjo Daro (2016)
9121 9121 163056 Shin Godzilla (2016)
9122 9122 163949 The Beatles: Eight Days a Week - The Touring Y...
9123 9123 164977 The Gay Desperado (1936)
9124 9124 164979 Women of '69, Unboxed

Объединить rating_df и movie_df на основе movieId

ratings_df = pd.merge(ratings_df, movies_df, on='movieId')
ratings_df.head()

результат:

userId movieId rating timestamp movieRow title
0 1 31 2.5 1260759144 30 Dangerous Minds (1995)
1 7 31 3.0 851868750 30 Dangerous Minds (1995)
2 31 31 4.0 1273541953 30 Dangerous Minds (1995)
3 32 31 4.0 834828440 30 Dangerous Minds (1995)
4 36 31 3.0 847057202 30 Dangerous Minds (1995)

Фильтровать функции в ratings_df

ratings_df = ratings_df[['userId','movieRow','rating']]
#筛选出三列
ratings_df.to_csv('./ml-latest-small/ratingsProcessed.csv', index=False, header=True, encoding='utf-8')
#导出一个新的文件ratingsProcessed.csv
ratings_df.head()

результат:

userId movieRow rating
0 1 30 2.5
1 7 30 3.0
2 31 30 4.0
3 32 30 4.0
4 36 30 3.0

Шаг 2: Создайте рейтинг матрицы рейтинга фильма и запись матрицы рейтинга.

userNo = ratings_df['userId'].max() + 1
#userNo的最大值
movieNo = ratings_df['movieRow'].max() + 1
#movieNo的最大值
rating = np.zeros((movieNo,userNo))
#创建一个值都是0的数据
flag = 0
ratings_df_length = np.shape(ratings_df)[0]
#查看矩阵ratings_df的第一维度是多少
for index,row in ratings_df.iterrows():
    #interrows(),对表格ratings_df进行遍历
    rating[int(row['movieRow']),int(row['userId'])] = row['rating']
    #将ratings_df表里的'movieRow'和'userId'列,填上row的‘评分’
    flag += 1
record = rating > 0
record
record = np.array(record, dtype = int)
#更改数据类型,0表示用户没有对电影评分,1表示用户已经对电影评分
record

результат:

array([[0, 0, 0, ..., 0, 1, 1],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       ...,
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0],
       [0, 0, 0, ..., 0, 0, 0]])

Шаг 3: Постройте модель

def normalizeRatings(rating, record):
    m, n =rating.shape
    #m代表电影数量,n代表用户数量
    rating_mean = np.zeros((m,1))
    #每部电影的平均得分
    rating_norm = np.zeros((m,n))
    #处理过的评分
    for i in range(m):
        idx = record[i,:] !=0
        #每部电影的评分,[i,:]表示每一行的所有列
        rating_mean[i] = np.mean(rating[i,idx])
        #第i行,评过份idx的用户的平均得分;
        #np.mean() 对所有元素求均值
        rating_norm[i,idx] -= rating_mean[i]
        #rating_norm = 原始得分-平均得分
    return rating_norm, rating_mean
rating_norm, rating_mean = normalizeRatings(rating, record)

результат:

/root/anaconda2/envs/python3/lib/python3.6/site-packages/numpy/core/fromnumeric.py:2957: RuntimeWarning: Mean of empty slice.
  out=out, **kwargs)
/root/anaconda2/envs/python3/lib/python3.6/site-packages/numpy/core/_methods.py:80: RuntimeWarning: invalid value encountered in double_scalars
  ret = ret.dtype.type(ret / rcount)

Примечание. Если в данных больше NaNN, это окажет большее влияние на последующие операции.

rating_norm =np.nan_to_num(rating_norm)
#对值为NaNN进行处理,改成数值0
rating_norm

результат:

array([[ 0.        ,  0.        ,  0.        , ...,  0.        ,
        -3.87246964, -3.87246964],
       [ 0.        ,  0.        ,  0.        , ...,  0.        ,
         0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        , ...,  0.        ,
         0.        ,  0.        ],
       ...,
       [ 0.        ,  0.        ,  0.        , ...,  0.        ,
         0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        , ...,  0.        ,
         0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        , ...,  0.        ,
         0.        ,  0.        ]])

rating_mean =np.nan_to_num(rating_mean)
#对值为NaNN进行处理,改成数值0
rating_mean

результат:

array([[3.87246964],
       [3.40186916],
       [3.16101695],
       ...,
       [3.        ],
       [0.        ],
       [5.        ]])

Построить модель

num_features = 10
X_parameters = tf.Variable(tf.random_normal([movieNo, num_features],stddev = 0.35))
Theta_parameters = tf.Variable(tf.random_normal([userNo, num_features],stddev = 0.35))
#tf.Variables()初始化变量
#tf.random_normal()函数用于从服从指定正太分布的数值中取出指定个数的值,mean: 正态分布的均值。stddev: 正态分布的标准差。dtype: 输出的类型
loss = 1/2 * tf.reduce_sum(((tf.matmul(X_parameters, Theta_parameters, transpose_b = True) - rating_norm) * record) ** 2) + 1/2 * (tf.reduce_sum(X_parameters ** 2) + tf.reduce_sum(Theta_parameters ** 2))
#基于内容的推荐算法模型

# 函数解释:
# reduce_sum() 就是求和,reduce_sum( input_tensor, axis=None,  keep_dims=False, name=None, reduction_indices=None)
# reduce_sum() 参数解释:
# 1) input_tensor:输入的张量。
# 2) axis:沿着哪个维度求和。对于二维的input_tensor张量,0表示按列求和,1表示按行求和,[0, 1]表示先按列求和再按行求和。
# 3) keep_dims:默认值为Flase,表示默认要降维。若设为True,则不降维。
# 4) name:名字。
# 5) reduction_indices:默认值是None,即把input_tensor降到 0维,也就是一个数。对于2维input_tensor,reduction_indices=0时,按列;reduction_indices=1时,按行。
# 6) 注意,reduction_indices与axis不能同时设置。

# tf.matmul(a,b),将矩阵 a 乘以矩阵 b,生成a * b
# tf.matmul(a,b)参数解释:
# 1) a:类型为 float16,float32,float64,int32,complex64,complex128 和 rank > 1的张量。
# 2) b:与 a 具有相同类型和 rank。
# 3) transpose_a:如果 True,a 在乘法之前转置。
# 4) transpose_b:如果 True,b 在乘法之前转置。
# 5) adjoint_a:如果 True,a 在乘法之前共轭和转置。
# 6) adjoint_b:如果 True,b 在乘法之前共轭和转置。
# 7) a_is_sparse:如果 True,a 被视为稀疏矩阵。
# 8) b_is_sparse:如果 True,b 被视为稀疏矩阵。
# 9) name:操作名称(可选)

оптимизация

optimizer = tf.train.AdamOptimizer(1e-4)
# https://blog.csdn.net/lenbow/article/details/52218551
train = optimizer.minimize(loss)
# Optimizer.minimize对一个损失变量基本上做两件事
# 它计算相对于模型参数的损失梯度。
# 然后应用计算出的梯度来更新变量。

Шаг 4: Обучите модель

# tf.summary的用法 https://www.cnblogs.com/lyc-seu/p/8647792.html
tf.summary.scalar('loss',loss)
#用来显示标量信息

результат:

summaryMerged = tf.summary.merge_all()
#merge_all 可以将所有summary全部保存到磁盘,以便tensorboard显示。
filename = './movie_tensorborad'
writer = tf.summary.FileWriter(filename)
#指定一个文件用来保存图。
sess = tf.Session()
#https://www.cnblogs.com/wuzhitj/p/6648610.html
init = tf.global_variables_initializer()
sess.run(init)
#运行
for i in range(5000):
    _, movie_summary = sess.run([train, summaryMerged])
    # 把训练的结果summaryMerged存在movie里
    writer.add_summary(movie_summary, i)
    # 把训练的结果保存下来

Посмотреть результаты тренировки: Введите tensorboard --logir=./ в терминал

Шаг 5: Оцените модель

Current_X_parameters, Current_Theta_parameters = sess.run([X_parameters, Theta_parameters])
# Current_X_parameters为用户内容矩阵,Current_Theta_parameters用户喜好矩阵
predicts = np.dot(Current_X_parameters,Current_Theta_parameters.T) + rating_mean
# dot函数是np中的矩阵乘法,np.dot(x,y) 等价于 x.dot(y)
errors = np.sqrt(np.sum((predicts - rating)**2))
# sqrt(arr) ,计算各元素的平方根
errors

результат:

4037.9002717628305

Шаг 6. Создайте полноценную систему рекомендаций фильмов

user_id = input('您要想哪位用户进行推荐?请输入用户编号:')
sortedResult = predicts[:, int(user_id)].argsort()[::-1]
# argsort()函数返回的是数组值从小到大的索引值; argsort()[::-1] 返回的是数组值从大到小的索引值
idx = 0
print('为该用户推荐的评分最高的20部电影是:'.center(80,'='))
# center() 返回一个原字符串居中,并使用空格填充至长度 width 的新字符串。默认填充字符为空格。
for i in sortedResult:
    print('评分: %.2f, 电影名: %s' % (predicts[i,int(user_id)],movies_df.iloc[i]['title']))
    # .iloc的用法:https://www.cnblogs.com/harvey888/p/6006200.html
    idx += 1
    if idx == 20:break

результат:

您要想哪位用户进行推荐?请输入用户编号:123
==============================为该用户推荐的评分最高的20部电影是:===============================
评分: 5.03, 电影名: Fireworks Wednesday (Chaharshanbe-soori) (2006)
评分: 4.88, 电影名: Woman on the Beach (Haebyeonui yeoin) (2006)
评分: 4.73, 电影名: Mummy's Ghost, The (1944)
评分: 4.66, 电影名: Maborosi (Maboroshi no hikari) (1995)
评分: 4.63, 电影名: Boiling Point (1993)
评分: 4.60, 电影名: Mala Noche (1985)
评分: 4.49, 电影名: All-Star Superman (2011)
评分: 4.47, 电影名: Bill Hicks: Relentless (1992)
评分: 4.45, 电影名: Something Borrowed (2011)
评分: 4.37, 电影名: Box of Moon Light (1996)
评分: 4.37, 电影名: Kwaidan (Kaidan) (1964)
评分: 4.35, 电影名: Sacrifice, The (Offret - Sacraficatio) (1986)
评分: 4.29, 电影名: Hotel de Love (1996)
评分: 4.27, 电影名: Aria (1987)
评分: 4.23, 电影名: Querelle (1982)
评分: 4.22, 电影名: Rocky VI (1986) 
评分: 4.21, 电影名: Little Lord Fauntleroy (1936)
评分: 4.19, 电影名: Hardcore (1979)
评分: 4.16, 电影名: Three of Hearts (1993)
评分: 4.15, 电影名: White Stripes Under Great White Northern Lights, The (2009)