Key concept of Machine Learning and TensorFlow
TensorFlow
www.tensorflow.org
is an open source machine learning framework.
Support language Python, C++, JavaScript, Java, Go, Swift.
Keras
is a high-level API to build and train models in TensorFlow
Colaboratory
col AB.research.Google.com/notebooks/i…
is a Google research project created to help disseminate machine learning education and research. It's a Jupyter notebook environment that requires no setup to use and runs entirely in the cloud.
Feature and lable
Briefly, feature is input; label is output.
A feature is one column of the data in your input set. For instance, if you're trying to predict the type of pet someone will choose, your input features might include age, home region, family income, etc. The label is the final choice, such as dog, fish, iguana, rock, etc.
Once you've trained your model, you will give it sets of new input containing those features; it will return the predicted "label" (pet type) for that person.
The features of the data, such as a house's size, age, etc.
Classification
Classify things such as classify images of clothing.
Regression
Predict the output of a continuous value according to the input, such as pridict house price according to the features of the house.
Key params for Karas to create a model
- Layer
- Функция потерь — измеряет, насколько точна модель во время обучения.
- Оптимизатор — это то, как модель обновляется на основе данных, которые она видит, и ее функции потери.
- Метрики — используются для мониторинга этапов обучения и тестирования.
Machine Learning Steps
- Import dataset.
fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
- Build model(choose layers, loss function, optimizer, metrics).
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28, 28)),
keras.layers.Dense(128, activation=tf.nn.relu),
keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer=tf.train.AdamOptimizer(),
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
- Train the model with train dataset, evaluate the trained model with the validate dataset.If not good enough, return to step2.
model.fit(train_images, train_labels, epochs=5)
test_loss, test_acc = model.evaluate(test_images, test_labels)
- Use the trained model to classify or predict new input data.
predictions = model.predict(test_images)
Overfitting and underfitting
A better understanding of Neural Network
TensorFlow demos
Classification: clissify clothing
import package
# TensorFlow and tf.keras
import tensorflow as tf
from tensorflow import keras
# Helper libraries
import numpy as np
import matplotlib.pyplot as plt
import dateset
fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
create model
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28, 28)),
keras.layers.Dense(128, activation=tf.nn.relu),
keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer=tf.train.AdamOptimizer(),
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
train model
model.fit(train_images, train_labels, epochs=5)
evaluate accuracy
test_loss, test_acc = model.evaluate(test_images, test_labels)
make predict
predictions = model.predict(test_images)
Regression: Predict house price
...
create model
model = keras.Sequential([
keras.layers.Dense(64, activation=tf.nn.relu,
input_shape=(train_data.shape[1],)),
keras.layers.Dense(64, activation=tf.nn.relu),
keras.layers.Dense(1)
])
optimizer = tf.train.RMSPropOptimizer(0.001)
model.compile(loss='mse',
optimizer=optimizer,
metrics=['mae'])
train model
history = model.fit(train_data, train_labels, epochs=EPOCHS,
validation_split=0.2, verbose=0,
callbacks=[PrintDot()])