Глубокий интерес | 07 Генеративно-состязательные сети

искусственный интеллект TensorFlow GitHub Нейронные сети
Глубокий интерес | 07 Генеративно-состязательные сети

Введение

Помимо VAE, Generative Adversarial Nets (GAN) также является очень популярной неконтролируемой генеративной моделью.

GAN в основном включает две основные сети.

  • Генератор (Generator): обозначается как G, за счет изучения большого количества образцов он может генерировать некоторые поддельные образцы, аналогичные VAE.
  • Дискриминатор (Discriminator): обозначается как D, принимает реальные выборки и выборки, сгенерированные G, и различает и различает
  • G и D играют друг против друга. Благодаря обучению как генерирующая способность G, так и различительная способность D постепенно усиливаются и сближаются.

Обучение GAN очень сложное, и есть много деталей, на которые нужно обратить внимание, чтобы создавать высококачественные изображения.

  • Надлежащее использование пакетной нормализации, LeakyReLU
  • использоватьstridesСвертка 2 вместо объединения
  • Чередуйте тренировки, чтобы одна сторона не была слишком сильной

Здесь мы беремMNISTНапример, поTensorFlowДля реализации GAN его также называют DCGAN (Deep Convolutional GAN) из-за использования глубокой сверточной нейронной сети.

DCGAN生成器结构

принцип

Для случайного распределения шума z генератор генерирует поддельные выборки через сложную функцию отображения

\hat{x}=G(z;\theta_g)

Дискриминатор использует еще одну сложную функцию отображения.Для реальных образцов или поддельных образцов он выводит значение от 0 до 1. Чем больше значение, тем больше вероятность того, что это настоящий образец.

s=D(x;\theta_d)

Общая целевая функция выглядит следующим образом

\min_{G}\max_{D} V(D,G)=\mathbb{E}_{x\sim p_{data}}[\log D(x)] + \mathbb{E}_{z\sim p_z}[\log(1-D(G(z)))]

выполнить

загрузить библиотеку

# -*- coding: utf-8 -*-

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import os, imageio

Скачать данные

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data')

Определите некоторые константы, сетевые входы, вспомогательные функции

batch_size = 100
z_dim = 100

OUTPUT_DIR = 'samples'
if not os.path.exists(OUTPUT_DIR):
    os.mkdir(OUTPUT_DIR)

X = tf.placeholder(dtype=tf.float32, shape=[None, 28, 28, 1], name='X')
noise = tf.placeholder(dtype=tf.float32, shape=[None, z_dim], name='noise')
is_training = tf.placeholder(dtype=tf.bool, name='is_training')

def lrelu(x, leak=0.2):
    return tf.maximum(x, leak * x)

def sigmoid_cross_entropy_with_logits(x, y):
    return tf.nn.sigmoid_cross_entropy_with_logits(logits=x, labels=y)

Часть дискриминатора

def discriminator(image, reuse=None, is_training=is_training):
    momentum = 0.9
    with tf.variable_scope('discriminator', reuse=reuse):
        h0 = lrelu(tf.layers.conv2d(image, kernel_size=5, filters=64, strides=2, padding='same'))
        
        h1 = tf.layers.conv2d(h0, kernel_size=5, filters=128, strides=2, padding='same')
        h1 = lrelu(tf.contrib.layers.batch_norm(h1, is_training=is_training, decay=momentum))
        
        h2 = tf.layers.conv2d(h1, kernel_size=5, filters=256, strides=2, padding='same')
        h2 = lrelu(tf.contrib.layers.batch_norm(h2, is_training=is_training, decay=momentum))
        
        h3 = tf.layers.conv2d(h2, kernel_size=5, filters=512, strides=2, padding='same')
        h3 = lrelu(tf.contrib.layers.batch_norm(h3, is_training=is_training, decay=momentum))
        
        h4 = tf.contrib.layers.flatten(h3)
        h4 = tf.layers.dense(h4, units=1)
        return tf.nn.sigmoid(h4), h4

секция генератора

def generator(z, is_training=is_training):
    momentum = 0.9
    with tf.variable_scope('generator', reuse=None):
        d = 3
        h0 = tf.layers.dense(z, units=d * d * 512)
        h0 = tf.reshape(h0, shape=[-1, d, d, 512])
        h0 = tf.nn.relu(tf.contrib.layers.batch_norm(h0, is_training=is_training, decay=momentum))
        
        h1 = tf.layers.conv2d_transpose(h0, kernel_size=5, filters=256, strides=2, padding='same')
        h1 = tf.nn.relu(tf.contrib.layers.batch_norm(h1, is_training=is_training, decay=momentum))
        
        h2 = tf.layers.conv2d_transpose(h1, kernel_size=5, filters=128, strides=2, padding='same')
        h2 = tf.nn.relu(tf.contrib.layers.batch_norm(h2, is_training=is_training, decay=momentum))
        
        h3 = tf.layers.conv2d_transpose(h2, kernel_size=5, filters=64, strides=2, padding='same')
        h3 = tf.nn.relu(tf.contrib.layers.batch_norm(h3, is_training=is_training, decay=momentum))
        
        h4 = tf.layers.conv2d_transpose(h3, kernel_size=5, filters=1, strides=1, padding='valid', activation=tf.nn.tanh, name='g')
        return h4 

Определите функцию потерь, обратите внимание, что здесь реализованы два дискриминатора, но параметры являются общими.

g = generator(noise)
d_real, d_real_logits = discriminator(X)
d_fake, d_fake_logits = discriminator(g, reuse=True)

vars_g = [var for var in tf.trainable_variables() if var.name.startswith('generator')]
vars_d = [var for var in tf.trainable_variables() if var.name.startswith('discriminator')]

loss_d_real = tf.reduce_mean(sigmoid_cross_entropy_with_logits(d_real_logits, tf.ones_like(d_real)))
loss_d_fake = tf.reduce_mean(sigmoid_cross_entropy_with_logits(d_fake_logits, tf.zeros_like(d_fake)))
loss_g = tf.reduce_mean(sigmoid_cross_entropy_with_logits(d_fake_logits, tf.ones_like(d_fake)))
loss_d = loss_d_real + loss_d_fake

Определите функцию оптимизации, обратите внимание, что функция потерь должна соответствовать регулируемым параметрам.

update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
    optimizer_d = tf.train.AdamOptimizer(learning_rate=0.0002, beta1=0.5).minimize(loss_d, var_list=vars_d)
    optimizer_g = tf.train.AdamOptimizer(learning_rate=0.0002, beta1=0.5).minimize(loss_g, var_list=vars_g)

Определите вспомогательную функцию для отображения нескольких изображений вместе в сетке.

def montage(images):
    if isinstance(images, list):
        images = np.array(images)
    img_h = images.shape[1]
    img_w = images.shape[2]
    n_plots = int(np.ceil(np.sqrt(images.shape[0])))
    m = np.ones((images.shape[1] * n_plots + n_plots + 1, images.shape[2] * n_plots + n_plots + 1)) * 0.5
    for i in range(n_plots):
        for j in range(n_plots):
            this_filter = i * n_plots + j
            if this_filter < images.shape[0]:
                this_img = images[this_filter]
                m[1 + i + i * img_h:1 + i + (i + 1) * img_h,
                  1 + j + j * img_w:1 + j + (j + 1) * img_w] = this_img
    return m

Начните обучение, тренируйте G дважды за итерацию

sess = tf.Session()
sess.run(tf.global_variables_initializer())
z_samples = np.random.uniform(-1.0, 1.0, [batch_size, z_dim]).astype(np.float32)
samples = []
loss = {'d': [], 'g': []}

for i in range(60000):
    n = np.random.uniform(-1.0, 1.0, [batch_size, z_dim]).astype(np.float32)
    batch = mnist.train.next_batch(batch_size=batch_size)[0]
    batch = np.reshape(batch, [-1, 28, 28, 1])
    batch = (batch - 0.5) * 2
    
    d_ls, g_ls = sess.run([loss_d, loss_g], feed_dict={X: batch, noise: n, is_training: True})
    loss['d'].append(d_ls)
    loss['g'].append(g_ls)
    
    sess.run(optimizer_d, feed_dict={X: batch, noise: n, is_training: True})
    sess.run(optimizer_g, feed_dict={X: batch, noise: n, is_training: True})
    sess.run(optimizer_g, feed_dict={X: batch, noise: n, is_training: True})
        
    if i % 1000 == 0:
        print(i, d_ls, g_ls)
        gen_imgs = sess.run(g, feed_dict={noise: z_samples, is_training: False})
        gen_imgs = (gen_imgs + 1) / 2
        imgs = [img[:, :, 0] for img in gen_imgs]
        gen_imgs = montage(imgs)
        plt.axis('off')
        plt.imshow(gen_imgs, cmap='gray')
        plt.savefig(os.path.join(OUTPUT_DIR, 'sample_%d.jpg' % i))
        plt.show()
        samples.append(gen_imgs)

plt.plot(loss['d'], label='Discriminator')
plt.plot(loss['g'], label='Generator')
plt.legend(loc='upper right')
plt.savefig('Loss.png')
plt.show()
imageio.mimsave(os.path.join(OUTPUT_DIR, 'samples.gif'), samples, fps=5)

Сгенерированное изображение выглядит следующим образом: поскольку в функции потерь не используется попиксельное сравнение, края графика не будут размыты.

DCGAN生成MNIST样例

Сохраните модель для последующего использования

saver = tf.train.Saver()
saver.save(sess, './mnist_dcgan', global_step=60000)

Загрузите модель, если необходимо, например, для использования на одной машине

# -*- coding: utf-8 -*-

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

batch_size = 100
z_dim = 100

def montage(images):
    if isinstance(images, list):
        images = np.array(images)
    img_h = images.shape[1]
    img_w = images.shape[2]
    n_plots = int(np.ceil(np.sqrt(images.shape[0])))
    m = np.ones((images.shape[1] * n_plots + n_plots + 1, images.shape[2] * n_plots + n_plots + 1)) * 0.5
    for i in range(n_plots):
        for j in range(n_plots):
            this_filter = i * n_plots + j
            if this_filter < images.shape[0]:
                this_img = images[this_filter]
                m[1 + i + i * img_h:1 + i + (i + 1) * img_h,
                  1 + j + j * img_w:1 + j + (j + 1) * img_w] = this_img
    return m

sess = tf.Session()
sess.run(tf.global_variables_initializer())

saver = tf.train.import_meta_graph('./mnist_dcgan-60000.meta')
saver.restore(sess, tf.train.latest_checkpoint('./'))

graph = tf.get_default_graph()
g = graph.get_tensor_by_name('generator/g/Tanh:0')
noise = graph.get_tensor_by_name('noise:0')
is_training = graph.get_tensor_by_name('is_training:0')

n = np.random.uniform(-1.0, 1.0, [batch_size, z_dim]).astype(np.float32)
gen_imgs = sess.run(g, feed_dict={noise: n, is_training: False})
gen_imgs = (gen_imgs + 1) / 2
imgs = [img[:, :, 0] for img in gen_imgs]
gen_imgs = montage(imgs)
plt.axis('off')
plt.imshow(gen_imgs, cmap='gray')
plt.show()

Ссылаться на

видеоурок

Глубоко и интересно (1)