Идентификация кошек на основе PaddlePaddle - чей ты котенок?

искусственный интеллект

Соси кошек вместе с кодом! Эта статья участвует【Эссе "Мяу Звезды"】.

Идентификация кошек на основе PaddlePaddle - чей ты котенок?

Одноклассник Сяомин: Котёнок из семьи Эргоузи снова пришёл его украсть Сяохуамао голодает, что мне делать? ? ?

что делать? ? ? Идентификация мелких домашних животных может быть проведена только исследовательской группой университета Что мне делать, как воспитаннику детского сада? ? ?

Одноклассник Сяомин в отчаянии почесал голову и издал болезненный звук «ааааа». . . . . .

Сяо Мин обнаружил новостной репортаж «Технология распознавания лиц обезьяны» уже здесь! 》new.QQ.com/О, красота/2021022…

Не волнуйтесь, детский сад Classmate Xiaoming, я научу вас использовать Paddlehub летающей весла, чтобы реализовать распознавание котенков, а котята, которые вы не знаете, не разрешается войти.

1. Сбор данных

Все видео с кошками собраны из общедоступных видео, а фото лица котенка получено через скриншот видео, поэтому нет необходимости делать отдельное фото.

!unzip -q data/data71411/cat.zip 

1.1 python вызывает openCV, чтобы делать снимок из видео каждую 1 секунду и сохраняет его после нумерации.

import cv2
import os

for i in range(1,5):
    # 创建图片目录
    print(i)
    mp4_file=str(i)+'.mp4'
    dir_path=os.path.join('dataset',str(i))
    if not os.path.exists(dir_path):
        os.makedirs(dir_path)
    # 每秒存一次图片
    vidcap = cv2.VideoCapture(mp4_file)
    success,image = vidcap.read()
    fps = int(vidcap.get(cv2.CAP_PROP_FPS))
    count = 0
    while success:
        if count % fps == 0:
            cv2.imwrite("{}/{}.jpg".format(dir_path, int(count / fps)), image)
        print('Process %dth seconds: ' % int(count / fps), success)
        success,image = vidcap.read()
        count += 1

1.2 Генерация изображений для обработки

Удалите ненормальные изображения, такие как кредиты

Вручную...................................

import matplotlib.pyplot as plt
%matplotlib inline
import cv2 as cv
import numpy as np


# jupyter notebook显示
def visualize_images():
    img = cv.imread('dataset/1/1.jpg')
    plt.imshow(img)
    plt.show()

visualize_images()

1.3 Представление набора данных

4 разных котенка

1.4 генерация списка

Для пользовательского набора данных сначала создайте список изображений, разделите пользовательские изображения на тестовый набор и обучающий набор и пометьте их. Следующая программа может быть запущена одна, если передан путь к папке большой категории, программа будет перебирать каждую подкатегорию в ней, чтобы сгенерировать список в фиксированном формате.Например, мы помещаем корневой каталог категория лица Передайте ее в ./dataset. Наконец, в указанном каталоге будут созданы три файла: readme.json, train.list и test.list.

import os
import json

# 设置要生成文件的路径
data_root_path = '/home/aistudio/dataset'
# 所有类别的信息
class_detail = []
# 获取所有类别保存的文件夹名称,这里是['1', '2', '3','4']
class_dirs = os.listdir(data_root_path)
# 类别标签
class_label = 0
# 获取总类别的名称
father_paths = data_root_path.split('/')    #['', 'home', 'aistudio', 'dataset']
while True:
    if father_paths[father_paths.__len__() - 1] == '':
        del father_paths[father_paths.__len__() - 1]
    else:
        break
father_path = father_paths[father_paths.__len__() - 1]
# 把生产的数据列表都放在自己的总类别文件夹中
data_list_path = '/home/aistudio/%s/' % father_path
# 如果不存在这个文件夹,就创建
isexist = os.path.exists(data_list_path)
if not isexist:
    os.makedirs(data_list_path)
# 清空原来的数据
with open(data_list_path + "test.txt", 'w') as f:
    pass
with open(data_list_path + "trainer.txt", 'w') as f:
    pass
# 总的图像数量
all_class_images = 0
# 读取每个类别
for class_dir in class_dirs:
    # 每个类别的信息
    class_detail_list = {}
    test_sum = 0
    trainer_sum = 0
    # 统计每个类别有多少张图片
    class_sum = 0
    # 获取类别路径
    path = data_root_path + "/" + class_dir
    # 获取所有图片
    img_paths = os.listdir(path)

    for img_path in img_paths:                                  # 遍历文件夹下的每个图片
        name_path = path + '/' + img_path                       # 每张图片的路径
        if class_sum % 10 == 0:                                 # 每10张图片取一个做测试数据
            test_sum += 1                                       #test_sum测试数据的数目
            with open(data_list_path + "test.txt", 'a') as f:
                f.write(name_path + "\t%d" % class_label + "\n") #class_label 标签:0,1,2
        else:
            trainer_sum += 1                                    #trainer_sum测试数据的数目
            with open(data_list_path + "trainer.txt", 'a') as f:
                f.write(name_path + "\t%d" % class_label + "\n")#class_label 标签:0,1,2
        class_sum += 1                                          #每类图片的数目
        all_class_images += 1                                   #所有类图片的数目

    # 说明的json文件的class_detail数据
    class_detail_list['class_name'] = class_dir             #类别名称,如jiangwen
    class_detail_list['class_label'] = class_label          #类别标签,0,1,2
    class_detail_list['class_test_images'] = test_sum       #该类数据的测试集数目
    class_detail_list['class_trainer_images'] = trainer_sum #该类数据的训练集数目
    class_detail.append(class_detail_list)         
    class_label += 1                                            #class_label 标签:0,1,2
# 获取类别数量
all_class_sum = class_dirs.__len__()
# 说明的json文件信息
readjson = {}
readjson['all_class_name'] = father_path                  #文件父目录
readjson['all_class_sum'] = all_class_sum                #
readjson['all_class_images'] = all_class_images
readjson['class_detail'] = class_detail
jsons = json.dumps(readjson, sort_keys=True, indent=4, separators=(',', ': '))
with open(data_list_path + "readme.json",'w') as f:
    f.write(jsons)
print ('生成数据列表完成!')
生成数据列表完成!

1.5 Создание набора данных

import paddle
import paddle.vision.transforms as T
import numpy as np
from PIL import Image

class MiaoMiaoDataset(paddle.io.Dataset):
    """
    2类Bee数据集类的定义
    """
    def __init__(self,mode='train'):
        """
        初始化函数
        """
        self.data = []
        with open('dataset/{}.txt'.format(mode)) as f:
            for line in f.readlines():
                info = line.strip().split('\t')
                if len(info) > 0:
                    self.data.append([info[0].strip(), info[1].strip()])

        if mode == 'train':
            self.transforms = T.Compose([
                T.Resize((224,224)), 
                T.RandomHorizontalFlip(0.5),        # 随机水平翻转
                T.ToTensor(),                       # 数据的格式转换和标准化 HWC => CHW  
                T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 图像归一化
            ])
        else:
            self.transforms = T.Compose([
                T.Resize((224,224)),           # 图像大小修改
                # T.RandomCrop(IMAGE_SIZE),    # 随机裁剪
                T.ToTensor(),                  # 数据的格式转换和标准化 HWC => CHW
                T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])   # 图像归一化
            ])

    def get_origin_data(self):
        return self.data

    def __getitem__(self, index):
        """
        根据索引获取单个样本
        """
        image_file, label = self.data[index]
        image = Image.open(image_file)
        if image.mode != 'RGB':
            image = image.convert('RGB')
        image = self.transforms(image)
        return image, np.array(label, dtype='int64')

    def __len__(self):
        """
        获取样本总数
        """
        return len(self.data)
train_dataset=MiaoMiaoDataset(mode='trainer')
test_dataset=MiaoMiaoDataset(mode='test')
print('train_data len: {}, test_data len:{}'.format(train_dataset.__len__(), test_dataset.__len__()))
train_data len: 45, test_data len:7

2. Определение модели и обучение

В настоящее время данные разделены на обучающие и тестовые наборы данных, а также на количество классификаций.

Далее мы определим модель и снова рассмотрим сеть resnet50.

import paddle
from paddle import Model

# 定义网络
network=paddle.vision.models.resnet50(num_classes=4, pretrained=True)
model = paddle.Model(network)
model.summary((-1, 3, 224 , 224))
100%|██████████| 151272/151272 [00:02<00:00, 72148.01it/s]


-------------------------------------------------------------------------------
   Layer (type)         Input Shape          Output Shape         Param #    
===============================================================================
     Conv2D-1        [[1, 3, 224, 224]]   [1, 64, 112, 112]        9,408     
   BatchNorm2D-1    [[1, 64, 112, 112]]   [1, 64, 112, 112]         256      
      ReLU-1        [[1, 64, 112, 112]]   [1, 64, 112, 112]          0       
    MaxPool2D-1     [[1, 64, 112, 112]]    [1, 64, 56, 56]           0       
     Conv2D-3        [[1, 64, 56, 56]]     [1, 64, 56, 56]         4,096     
   BatchNorm2D-3     [[1, 64, 56, 56]]     [1, 64, 56, 56]          256      
      ReLU-2         [[1, 256, 56, 56]]    [1, 256, 56, 56]          0       
     Conv2D-4        [[1, 64, 56, 56]]     [1, 64, 56, 56]        36,864     
   BatchNorm2D-4     [[1, 64, 56, 56]]     [1, 64, 56, 56]          256      
     Conv2D-5        [[1, 64, 56, 56]]     [1, 256, 56, 56]       16,384     
   BatchNorm2D-5     [[1, 256, 56, 56]]    [1, 256, 56, 56]        1,024     
     Conv2D-2        [[1, 64, 56, 56]]     [1, 256, 56, 56]       16,384     
   BatchNorm2D-2     [[1, 256, 56, 56]]    [1, 256, 56, 56]        1,024     
 BottleneckBlock-1   [[1, 64, 56, 56]]     [1, 256, 56, 56]          0       
     Conv2D-6        [[1, 256, 56, 56]]    [1, 64, 56, 56]        16,384     
   BatchNorm2D-6     [[1, 64, 56, 56]]     [1, 64, 56, 56]          256      
      ReLU-3         [[1, 256, 56, 56]]    [1, 256, 56, 56]          0       
     Conv2D-7        [[1, 64, 56, 56]]     [1, 64, 56, 56]        36,864     
   BatchNorm2D-7     [[1, 64, 56, 56]]     [1, 64, 56, 56]          256      
     Conv2D-8        [[1, 64, 56, 56]]     [1, 256, 56, 56]       16,384     
   BatchNorm2D-8     [[1, 256, 56, 56]]    [1, 256, 56, 56]        1,024     
 BottleneckBlock-2   [[1, 256, 56, 56]]    [1, 256, 56, 56]          0       
     Conv2D-9        [[1, 256, 56, 56]]    [1, 64, 56, 56]        16,384     
   BatchNorm2D-9     [[1, 64, 56, 56]]     [1, 64, 56, 56]          256      
      ReLU-4         [[1, 256, 56, 56]]    [1, 256, 56, 56]          0       
     Conv2D-10       [[1, 64, 56, 56]]     [1, 64, 56, 56]        36,864     
  BatchNorm2D-10     [[1, 64, 56, 56]]     [1, 64, 56, 56]          256      
     Conv2D-11       [[1, 64, 56, 56]]     [1, 256, 56, 56]       16,384     
  BatchNorm2D-11     [[1, 256, 56, 56]]    [1, 256, 56, 56]        1,024     
 BottleneckBlock-3   [[1, 256, 56, 56]]    [1, 256, 56, 56]          0       
     Conv2D-13       [[1, 256, 56, 56]]    [1, 128, 56, 56]       32,768     
  BatchNorm2D-13     [[1, 128, 56, 56]]    [1, 128, 56, 56]         512      
      ReLU-5         [[1, 512, 28, 28]]    [1, 512, 28, 28]          0       
     Conv2D-14       [[1, 128, 56, 56]]    [1, 128, 28, 28]       147,456    
  BatchNorm2D-14     [[1, 128, 28, 28]]    [1, 128, 28, 28]         512      
     Conv2D-15       [[1, 128, 28, 28]]    [1, 512, 28, 28]       65,536     
  BatchNorm2D-15     [[1, 512, 28, 28]]    [1, 512, 28, 28]        2,048     
     Conv2D-12       [[1, 256, 56, 56]]    [1, 512, 28, 28]       131,072    
  BatchNorm2D-12     [[1, 512, 28, 28]]    [1, 512, 28, 28]        2,048     
 BottleneckBlock-4   [[1, 256, 56, 56]]    [1, 512, 28, 28]          0       
     Conv2D-16       [[1, 512, 28, 28]]    [1, 128, 28, 28]       65,536     
  BatchNorm2D-16     [[1, 128, 28, 28]]    [1, 128, 28, 28]         512      
      ReLU-6         [[1, 512, 28, 28]]    [1, 512, 28, 28]          0       
     Conv2D-17       [[1, 128, 28, 28]]    [1, 128, 28, 28]       147,456    
  BatchNorm2D-17     [[1, 128, 28, 28]]    [1, 128, 28, 28]         512      
     Conv2D-18       [[1, 128, 28, 28]]    [1, 512, 28, 28]       65,536     
  BatchNorm2D-18     [[1, 512, 28, 28]]    [1, 512, 28, 28]        2,048     
 BottleneckBlock-5   [[1, 512, 28, 28]]    [1, 512, 28, 28]          0       
     Conv2D-19       [[1, 512, 28, 28]]    [1, 128, 28, 28]       65,536     
  BatchNorm2D-19     [[1, 128, 28, 28]]    [1, 128, 28, 28]         512      
      ReLU-7         [[1, 512, 28, 28]]    [1, 512, 28, 28]          0       
     Conv2D-20       [[1, 128, 28, 28]]    [1, 128, 28, 28]       147,456    
  BatchNorm2D-20     [[1, 128, 28, 28]]    [1, 128, 28, 28]         512      
     Conv2D-21       [[1, 128, 28, 28]]    [1, 512, 28, 28]       65,536     
  BatchNorm2D-21     [[1, 512, 28, 28]]    [1, 512, 28, 28]        2,048     
 BottleneckBlock-6   [[1, 512, 28, 28]]    [1, 512, 28, 28]          0       
     Conv2D-22       [[1, 512, 28, 28]]    [1, 128, 28, 28]       65,536     
  BatchNorm2D-22     [[1, 128, 28, 28]]    [1, 128, 28, 28]         512      
      ReLU-8         [[1, 512, 28, 28]]    [1, 512, 28, 28]          0       
     Conv2D-23       [[1, 128, 28, 28]]    [1, 128, 28, 28]       147,456    
  BatchNorm2D-23     [[1, 128, 28, 28]]    [1, 128, 28, 28]         512      
     Conv2D-24       [[1, 128, 28, 28]]    [1, 512, 28, 28]       65,536     
  BatchNorm2D-24     [[1, 512, 28, 28]]    [1, 512, 28, 28]        2,048     
 BottleneckBlock-7   [[1, 512, 28, 28]]    [1, 512, 28, 28]          0       
     Conv2D-26       [[1, 512, 28, 28]]    [1, 256, 28, 28]       131,072    
  BatchNorm2D-26     [[1, 256, 28, 28]]    [1, 256, 28, 28]        1,024     
      ReLU-9        [[1, 1024, 14, 14]]   [1, 1024, 14, 14]          0       
     Conv2D-27       [[1, 256, 28, 28]]    [1, 256, 14, 14]       589,824    
  BatchNorm2D-27     [[1, 256, 14, 14]]    [1, 256, 14, 14]        1,024     
     Conv2D-28       [[1, 256, 14, 14]]   [1, 1024, 14, 14]       262,144    
  BatchNorm2D-28    [[1, 1024, 14, 14]]   [1, 1024, 14, 14]        4,096     
     Conv2D-25       [[1, 512, 28, 28]]   [1, 1024, 14, 14]       524,288    
  BatchNorm2D-25    [[1, 1024, 14, 14]]   [1, 1024, 14, 14]        4,096     
 BottleneckBlock-8   [[1, 512, 28, 28]]   [1, 1024, 14, 14]          0       
     Conv2D-29      [[1, 1024, 14, 14]]    [1, 256, 14, 14]       262,144    
  BatchNorm2D-29     [[1, 256, 14, 14]]    [1, 256, 14, 14]        1,024     
      ReLU-10       [[1, 1024, 14, 14]]   [1, 1024, 14, 14]          0       
     Conv2D-30       [[1, 256, 14, 14]]    [1, 256, 14, 14]       589,824    
  BatchNorm2D-30     [[1, 256, 14, 14]]    [1, 256, 14, 14]        1,024     
     Conv2D-31       [[1, 256, 14, 14]]   [1, 1024, 14, 14]       262,144    
  BatchNorm2D-31    [[1, 1024, 14, 14]]   [1, 1024, 14, 14]        4,096     
 BottleneckBlock-9  [[1, 1024, 14, 14]]   [1, 1024, 14, 14]          0       
     Conv2D-32      [[1, 1024, 14, 14]]    [1, 256, 14, 14]       262,144    
  BatchNorm2D-32     [[1, 256, 14, 14]]    [1, 256, 14, 14]        1,024     
      ReLU-11       [[1, 1024, 14, 14]]   [1, 1024, 14, 14]          0       
     Conv2D-33       [[1, 256, 14, 14]]    [1, 256, 14, 14]       589,824    
  BatchNorm2D-33     [[1, 256, 14, 14]]    [1, 256, 14, 14]        1,024     
     Conv2D-34       [[1, 256, 14, 14]]   [1, 1024, 14, 14]       262,144    
  BatchNorm2D-34    [[1, 1024, 14, 14]]   [1, 1024, 14, 14]        4,096     
BottleneckBlock-10  [[1, 1024, 14, 14]]   [1, 1024, 14, 14]          0       
     Conv2D-35      [[1, 1024, 14, 14]]    [1, 256, 14, 14]       262,144    
  BatchNorm2D-35     [[1, 256, 14, 14]]    [1, 256, 14, 14]        1,024     
      ReLU-12       [[1, 1024, 14, 14]]   [1, 1024, 14, 14]          0       
     Conv2D-36       [[1, 256, 14, 14]]    [1, 256, 14, 14]       589,824    
  BatchNorm2D-36     [[1, 256, 14, 14]]    [1, 256, 14, 14]        1,024     
     Conv2D-37       [[1, 256, 14, 14]]   [1, 1024, 14, 14]       262,144    
  BatchNorm2D-37    [[1, 1024, 14, 14]]   [1, 1024, 14, 14]        4,096     
BottleneckBlock-11  [[1, 1024, 14, 14]]   [1, 1024, 14, 14]          0       
     Conv2D-38      [[1, 1024, 14, 14]]    [1, 256, 14, 14]       262,144    
  BatchNorm2D-38     [[1, 256, 14, 14]]    [1, 256, 14, 14]        1,024     
      ReLU-13       [[1, 1024, 14, 14]]   [1, 1024, 14, 14]          0       
     Conv2D-39       [[1, 256, 14, 14]]    [1, 256, 14, 14]       589,824    
  BatchNorm2D-39     [[1, 256, 14, 14]]    [1, 256, 14, 14]        1,024     
     Conv2D-40       [[1, 256, 14, 14]]   [1, 1024, 14, 14]       262,144    
  BatchNorm2D-40    [[1, 1024, 14, 14]]   [1, 1024, 14, 14]        4,096     
BottleneckBlock-12  [[1, 1024, 14, 14]]   [1, 1024, 14, 14]          0       
     Conv2D-41      [[1, 1024, 14, 14]]    [1, 256, 14, 14]       262,144    
  BatchNorm2D-41     [[1, 256, 14, 14]]    [1, 256, 14, 14]        1,024     
      ReLU-14       [[1, 1024, 14, 14]]   [1, 1024, 14, 14]          0       
     Conv2D-42       [[1, 256, 14, 14]]    [1, 256, 14, 14]       589,824    
  BatchNorm2D-42     [[1, 256, 14, 14]]    [1, 256, 14, 14]        1,024     
     Conv2D-43       [[1, 256, 14, 14]]   [1, 1024, 14, 14]       262,144    
  BatchNorm2D-43    [[1, 1024, 14, 14]]   [1, 1024, 14, 14]        4,096     
BottleneckBlock-13  [[1, 1024, 14, 14]]   [1, 1024, 14, 14]          0       
     Conv2D-45      [[1, 1024, 14, 14]]    [1, 512, 14, 14]       524,288    
  BatchNorm2D-45     [[1, 512, 14, 14]]    [1, 512, 14, 14]        2,048     
      ReLU-15        [[1, 2048, 7, 7]]     [1, 2048, 7, 7]           0       
     Conv2D-46       [[1, 512, 14, 14]]     [1, 512, 7, 7]       2,359,296   
  BatchNorm2D-46      [[1, 512, 7, 7]]      [1, 512, 7, 7]         2,048     
     Conv2D-47        [[1, 512, 7, 7]]     [1, 2048, 7, 7]       1,048,576   
  BatchNorm2D-47     [[1, 2048, 7, 7]]     [1, 2048, 7, 7]         8,192     
     Conv2D-44      [[1, 1024, 14, 14]]    [1, 2048, 7, 7]       2,097,152   
  BatchNorm2D-44     [[1, 2048, 7, 7]]     [1, 2048, 7, 7]         8,192     
BottleneckBlock-14  [[1, 1024, 14, 14]]    [1, 2048, 7, 7]           0       
     Conv2D-48       [[1, 2048, 7, 7]]      [1, 512, 7, 7]       1,048,576   
  BatchNorm2D-48      [[1, 512, 7, 7]]      [1, 512, 7, 7]         2,048     
      ReLU-16        [[1, 2048, 7, 7]]     [1, 2048, 7, 7]           0       
     Conv2D-49        [[1, 512, 7, 7]]      [1, 512, 7, 7]       2,359,296   
  BatchNorm2D-49      [[1, 512, 7, 7]]      [1, 512, 7, 7]         2,048     
     Conv2D-50        [[1, 512, 7, 7]]     [1, 2048, 7, 7]       1,048,576   
  BatchNorm2D-50     [[1, 2048, 7, 7]]     [1, 2048, 7, 7]         8,192     
BottleneckBlock-15   [[1, 2048, 7, 7]]     [1, 2048, 7, 7]           0       
     Conv2D-51       [[1, 2048, 7, 7]]      [1, 512, 7, 7]       1,048,576   
  BatchNorm2D-51      [[1, 512, 7, 7]]      [1, 512, 7, 7]         2,048     
      ReLU-17        [[1, 2048, 7, 7]]     [1, 2048, 7, 7]           0       
     Conv2D-52        [[1, 512, 7, 7]]      [1, 512, 7, 7]       2,359,296   
  BatchNorm2D-52      [[1, 512, 7, 7]]      [1, 512, 7, 7]         2,048     
     Conv2D-53        [[1, 512, 7, 7]]     [1, 2048, 7, 7]       1,048,576   
  BatchNorm2D-53     [[1, 2048, 7, 7]]     [1, 2048, 7, 7]         8,192     
BottleneckBlock-16   [[1, 2048, 7, 7]]     [1, 2048, 7, 7]           0       
AdaptiveAvgPool2D-1  [[1, 2048, 7, 7]]     [1, 2048, 1, 1]           0       
     Linear-1           [[1, 2048]]             [1, 4]             8,196     
===============================================================================
Total params: 23,569,348
Trainable params: 23,463,108
Non-trainable params: 106,240
-------------------------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 261.48
Params size (MB): 89.91
Estimated Total Size (MB): 351.96
-------------------------------------------------------------------------------



/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/layers.py:1263: UserWarning: Skip loading for fc.weight. fc.weight receives a shape [2048, 1000], but the expected shape is [2048, 4].
  warnings.warn(("Skip loading for {}. ".format(key) + str(err)))
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/layers.py:1263: UserWarning: Skip loading for fc.bias. fc.bias receives a shape [1000], but the expected shape is [4].
  warnings.warn(("Skip loading for {}. ".format(key) + str(err)))





{'total_params': 23569348, 'trainable_params': 23463108}
# 模型训练配置
model.prepare(optimizer=paddle.optimizer.Adam(learning_rate=0.000005,parameters=model.parameters()),# 优化器
              loss=paddle.nn.CrossEntropyLoss(),           # 损失函数
              metrics=paddle.metric.Accuracy()) # 评估指标
# 训练可视化VisualDL工具的回调函数
visualdl = paddle.callbacks.VisualDL(log_dir='visualdl_log')        
# 启动模型全流程训练
model.fit(train_dataset,            # 训练数据集
          # test_dataset,            # 评估数据集
          epochs=20,            # 总的训练轮次
          batch_size=256,    # 批次计算的样本量大小
          shuffle=True,             # 是否打乱样本集
          verbose=1,                # 日志展示格式
          save_dir='./chk_points/', # 分阶段的训练模型存储路径
          callbacks=[visualdl])     # 回调函数使用
model.save('model_save')

3. Оценка и тестирование модели

# plot the evaluate
model.evaluate(test_dataset,verbose=1)
Eval begin...
The loss value printed in the log is the current batch, and the metric is the average value of previous step.
step 7/7 [==============================] - loss: 0.0000e+00 - acc: 0.7143 - 30ms/step
Eval samples: 7





{'loss': [0.0], 'acc': 0.7142857142857143}

предсказывать

Делайте прогнозы на основе данных test_dataset

print('测试数据集样本量:{}'.format(len(test_dataset)))
测试数据集样本量:7
# 执行预测
result = model.predict(test_dataset)
Predict begin...
step 7/7 [==============================] - 32ms/step         
Predict samples: 7
# 打印前10条看看结果
for idx in range(7):
    predict_label = str(np.argmax(result[0][idx]))
    real_label = str(test_dataset.__getitem__(idx)[1])
    print('样本ID:{}, 真实标签:{}, 预测值:{}'.format(idx, real_label, predict_label))
样本ID:0, 真实标签:0, 预测值:0
样本ID:1, 真实标签:0, 预测值:0
样本ID:2, 真实标签:2, 预测值:2
样本ID:3, 真实标签:3, 预测值:3
样本ID:4, 真实标签:3, 预测值:3
样本ID:5, 真实标签:4, 预测值:0
样本ID:6, 真实标签:4, 预测值:1
# 定义画图方法
from PIL import Image
import matplotlib.font_manager as font_manager
import matplotlib.pyplot as plt
%matplotlib inline

fontpath = 'MINGHEI_R.TTF'
font = font_manager.FontProperties(fname=fontpath, size=10)

def show_img(img, predict):
    plt.figure()
    plt.title(predict, FontProperties=font)
    plt.imshow(img, cmap=plt.cm.binary)
    plt.show()


# 抽样展示
origin_data=test_dataset.get_origin_data()
for i in range(7):
    img_path=origin_data[i][0]
    real_label=str(origin_data[i][1])
    predict_label= str(np.argmax(result[0][i]))
    img=Image.open(img_path)
    title='样本ID:{}, 真实标签:{}, 预测值:{}'.format(idx, real_label, predict_label)
    show_img(img, title)