Кодовое упражнение OUC_SE: предварительные сверточные нейронные сети

алгоритм

Упражнение по коду сверточной нейронной сети

Классификация данных MNIST

  1. Сначала создайте простую сверточную нейронную сеть (CNN), здесь вам нужно установить torch с помощью следующей команды, я тестировал ее в среде Colab.

!pip3 install torch==1.2.0+cu92 torchvision==0.4.0+cu92https://download.pytorch.org/whl/torch_stable.html

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import numpy

# 一个函数,用来计算模型中有多少参数
def get_n_params(model):
    np=0
    for p in list(model.parameters()):
        np += p.nelement()
    return np

# 使用GPU训练,可以在菜单 "代码执行工具" -> "更改运行时类型" 里进行设置
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

результат

  1. Загрузить данные, Pytorch уже содержит часто используемые наборы данных, можно вызватьtorchvision.datasetsЗагрузите данные в локальную сеть, прототип метода MINIST выглядит следующим образом:

    • Корень: набор данных загружается в локальный корневой каталог.

    • Train: Когда значение равно True,training.ptСоздайте набор данных, в противном случае изtest.ptСоздать набор данных

    • загрузка: если установлено значение True, вор будет загружать данные из Интернета и помещать их в корневую папку.

    • преобразование: функция или преобразование, которое вводит изображение PIL и возвращает преобразованные данные.

    • target_transform: функция или преобразование, которое вводит цель и преобразует ее.

      Мы используем код для достижения вышеуказанных функций

input_size  = 28*28   # MNIST上的图像尺寸是 28x28
output_size = 10      # 类别为 0 到 9 的数字,因此为十类

train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('./data', train=True, download=True,
        transform=transforms.Compose(
            [transforms.ToTensor(),
             transforms.Normalize((0.1307,), (0.3081,))])),
    batch_size=64, shuffle=True)

test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('./data', train=False, transform=transforms.Compose([
             transforms.ToTensor(),
             transforms.Normalize((0.1307,), (0.3081,))])),
    batch_size=1000, shuffle=True)
  1. Визуализируйте набор данных:


plt.figure(figsize=(8, 5))
for i in range(20):
    plt.subplot(4, 5, i + 1)
    image, _ = train_loader.dataset.__getitem__(i)
    plt.imshow(image.squeeze().numpy(),'gray')
    plt.axis('off');
  1. Создать сеть

class FC2Layer(nn.Module):
    def __init__(self, input_size, n_hidden, output_size):
        # nn.Module子类的函数必须在构造函数中执行父类的构造函数
        # 下式等价于nn.Module.__init__(self)        
        super(FC2Layer, self).__init__()
        self.input_size = input_size
        # 这里直接用 Sequential 就定义了网络,注意要和下面 CNN 的代码区分开
        self.network = nn.Sequential(
            nn.Linear(input_size, n_hidden), 
            nn.ReLU(), 
            nn.Linear(n_hidden, n_hidden), 
            nn.ReLU(), 
            nn.Linear(n_hidden, output_size), 
            nn.LogSoftmax(dim=1)
        )
    def forward(self, x):
        # view一般出现在model类的forward函数中,用于改变输入或输出的形状
        # x.view(-1, self.input_size) 的意思是多维的数据展成二维
        # 代码指定二维数据的列数为 input_size=784,行数 -1 表示我们不想算,电脑会自己计算对应的数字
        # 在 DataLoader 部分,我们可以看到 batch_size 是64,所以得到 x 的行数是64
        # 大家可以加一行代码:print(x.cpu().numpy().shape)
        # 训练过程中,就会看到 (64, 784) 的输出,和我们的预期是一致的

        # forward 函数的作用是,指定网络的运行过程,这个全连接网络可能看不啥意义,
        # 下面的CNN网络可以看出 forward 的作用。
        x = x.view(-1, self.input_size)
        return self.network(x)
    


class CNN(nn.Module):
    def __init__(self, input_size, n_feature, output_size):
        # 执行父类的构造函数,所有的网络都要这么写
        super(CNN, self).__init__()
        # 下面是网络里典型结构的一些定义,一般就是卷积和全连接
        # 池化、ReLU一类的不用在这里定义
        self.n_feature = n_feature
        self.conv1 = nn.Conv2d(in_channels=1, out_channels=n_feature, kernel_size=5)
        self.conv2 = nn.Conv2d(n_feature, n_feature, kernel_size=5)
        self.fc1 = nn.Linear(n_feature*4*4, 50)
        self.fc2 = nn.Linear(50, 10)    
    
    # 下面的 forward 函数,定义了网络的结构,按照一定顺序,把上面构建的一些结构组织起来
    # 意思就是,conv1, conv2 等等的,可以多次重用
    def forward(self, x, verbose=False):
        x = self.conv1(x)
        x = F.relu(x)
        x = F.max_pool2d(x, kernel_size=2)
        x = self.conv2(x)
        x = F.relu(x)
        x = F.max_pool2d(x, kernel_size=2)
        x = x.view(-1, self.n_feature*4*4)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.fc2(x)
        x = F.log_softmax(x, dim=1)
        return x
定义训练和测试函数

In [0]:
# 训练函数
def train(model):
    model.train()
    # 主里从train_loader里,64个样本一个batch为单位提取样本进行训练
    for batch_idx, (data, target) in enumerate(train_loader):
        # 把数据送到GPU中
        data, target = data.to(device), target.to(device)

        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 100 == 0:
            print('Train: [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))


def test(model):
    model.eval()
    test_loss = 0
    correct = 0
    for data, target in test_loader:
        # 把数据送到GPU中
        data, target = data.to(device), target.to(device)
        # 把数据送入模型,得到预测结果
        output = model(data)
        # 计算本次batch的损失,并加到 test_loss 中
        test_loss += F.nll_loss(output, target, reduction='sum').item()
        # get the index of the max log-probability,最后一层输出10个数,
        # 值最大的那个即对应着分类结果,然后把分类结果保存在 pred 里
        pred = output.data.max(1, keepdim=True)[1]
        # 将 pred 与 target 相比,得到正确预测结果的数量,并加到 correct 中
        # 这里需要注意一下 view_as ,意思是把 target 变成维度和 pred 一样的意思                                                
        correct += pred.eq(target.data.view_as(pred)).cpu().sum().item()

    test_loss /= len(test_loader.dataset)
    accuracy = 100. * correct / len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        accuracy))
  1. Тренируйтесь в небольшой полностью подключенной сети:
n_hidden = 8 # number of hidden units

model_fnn = FC2Layer(input_size, n_hidden, output_size)
model_fnn.to(device)
optimizer = optim.SGD(model_fnn.parameters(), lr=0.01, momentum=0.5)
print('Number of parameters: {}'.format(get_n_params(model_fnn)))

train(model_fnn)
test(model_fnn)
  1. Обучение сверточных нейронных сетей
n_features = 6 # number of feature maps

model_cnn = CNN(input_size, n_features, output_size)
model_cnn.to(device)
optimizer = optim.SGD(model_cnn.parameters(), lr=0.01, momentum=0.5)
print('Number of parameters: {}'.format(get_n_params(model_cnn)))

train(model_cnn)
test(model_cnn)

Мы можем обнаружить, что эффект CNN с параметрами значительно лучше, чем у простой полносвязной сети, что связано с двумя характеристиками CNN.

  • свертка
  • объединение
  1. Дезорганизуйте порядок пикселей, снова обучите и протестируйте две сети.На следующем рисунке показано изображение после нарушения порядка пикселей.
perm = torch.randperm(784)
plt.figure(figsize=(8, 4))
for i in range(10):
    image, _ = train_loader.dataset.__getitem__(i)
    # permute pixels
    image_perm = image.view(-1, 28*28).clone()
    image_perm = image_perm[:, perm]
    image_perm = image_perm.view(-1, 1, 28, 28)
    plt.subplot(4, 5, i + 1)
    plt.imshow(image.squeeze().numpy(), 'gray')
    plt.axis('off')
    plt.subplot(4, 5, i + 11)
    plt.imshow(image_perm.squeeze().numpy(), 'gray')
    plt.axis('off')
  1. Чтобы переопределить функции обучения и тестирования, мы написали две функции train_perm и test_perm, которые соответствуют функциям обучения и тестирования, добавляющим пиксели для перетасовки порядка соответственно.

    В основном это то же самое, что и предыдущие функции обучения и тестирования, за исключением того, что к данным добавляется операция перемешивания.

    # 对每个 batch 里的数据,打乱像素顺序的函数
    def perm_pixel(data, perm):
        # 转化为二维矩阵
        data_new = data.view(-1, 28*28)
        # 打乱像素顺序
        data_new = data_new[:, perm]
        # 恢复为原来4维的 tensor
        data_new = data_new.view(-1, 1, 28, 28)
        return data_new
    
    # 训练函数
    def train_perm(model, perm):
        model.train()
        for batch_idx, (data, target) in enumerate(train_loader):
            data, target = data.to(device), target.to(device)
            # 像素打乱顺序
            data = perm_pixel(data, perm)
    
            optimizer.zero_grad()
            output = model(data)
            loss = F.nll_loss(output, target)
            loss.backward()
            optimizer.step()
            if batch_idx % 100 == 0:
                print('Train: [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                    batch_idx * len(data), len(train_loader.dataset),
                    100. * batch_idx / len(train_loader), loss.item()))
    
    # 测试函数
    def test_perm(model, perm):
        model.eval()
        test_loss = 0
        correct = 0
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
    
            # 像素打乱顺序
            data = perm_pixel(data, perm)
    
            output = model(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item()
            pred = output.data.max(1, keepdim=True)[1]                                            
            correct += pred.eq(target.data.view_as(pred)).cpu().sum().item()
    
        test_loss /= len(test_loader.dataset)
        accuracy = 100. * correct / len(test_loader.dataset)
        print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
            test_loss, correct, len(test_loader.dataset),
            accuracy))
    
    1. Обучение и тестирование в полностью подключенной сети
    perm = torch.randperm(784)
    n_hidden = 8 # number of hidden units
    
    model_fnn = FC2Layer(input_size, n_hidden, output_size)
    model_fnn.to(device)
    optimizer = optim.SGD(model_fnn.parameters(), lr=0.01, momentum=0.5)
    print('Number of parameters: {}'.format(get_n_params(model_fnn)))
    
    train_perm(model_fnn, perm)
    test_perm(model_fnn, perm)
    

image.png10. Обучайте и тестируйте сверточные нейронные сети


perm = torch.randperm(784)
n_features = 6 # number of feature maps

model_cnn = CNN(input_size, n_features, output_size)
model_cnn.to(device)
optimizer = optim.SGD(model_cnn.parameters(), lr=0.01, momentum=0.5)
print('Number of parameters: {}'.format(get_n_params(model_cnn)))

train_perm(model_cnn, perm)
test_perm(model_cnn, perm)

image.png