Моделирование с использованием объектов nn.Sequential() и nn.ModuleList

искусственный интеллект

1. Три способа использования nn.Sequential() для построения модели

import torch as t
from torch import nn

# Sequential的三种写法
net1 = nn.Sequential()
net1.add_module('conv', nn.Conv2d(3, 3, 3))  # Conv2D(输入通道数,输出通道数,卷积核大小)
net1.add_module('batchnorm', nn.BatchNorm2d(3))  # BatchNorm2d(特征数)
net1.add_module('activation_layer', nn.ReLU())

net2 = nn.Sequential(nn.Conv2d(3, 3, 3),
                     nn.BatchNorm2d(3),
                     nn.ReLU()
                     )

from collections import OrderedDict
#注意字典的key不能重复
net3 = nn.Sequential(OrderedDict([
    ('conv1', nn.Conv2d(3, 3, 3)),
    ('bh1', nn.BatchNorm2d(3)),
    ('al', nn.ReLU())
]))

print('net1', net1)
print('net2', net2)
print('net3', net3)

# 可根据名字或序号取出子module
print(net1.conv, net2[0], net3.conv1)

вывод:


net1 Sequential(
  (conv): Conv2d(3, 3, kernel_size=(3, 3), stride=(1, 1))
  (batchnorm): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (activation_layer): ReLU()
)
net2 Sequential(
  (0): Conv2d(3, 3, kernel_size=(3, 3), stride=(1, 1))
  (1): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (2): ReLU()
)
net3 Sequential(
  (conv1): Conv2d(3, 3, kernel_size=(3, 3), stride=(1, 1))
  (bh1): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (al): ReLU()
)
Conv2d(3, 3, kernel_size=(3, 3), stride=(1, 1)) Conv2d(3, 3, kernel_size=(3, 3), stride=(1, 1)) Conv2d(3, 3, kernel_size=(3, 3), stride=(1, 1))

2. Используйте nn.ModuleList для построения модели.

class MyModule(nn.Module):
    def __init__(self):
        super(MyModule, self).__init__()
        self.list = [nn.Linear(3, 4), nn.ReLU()]
        self.module_list = nn.ModuleList([nn.Conv2d(3, 3, 3), nn.ReLU()])

    def forward(self):
        pass


model = MyModule()
print(model)

вывод:

MyModule(
  (module_list): ModuleList(
    (0): Conv2d(3, 3, kernel_size=(3, 3), stride=(1, 1))
    (1): ReLU()
  )
)

3. Объединение двух для построения более сложной сетевой модели.

Например, модель декодера в cisnet

class Decoder(nn.Module):
    num_quan_bits = 4
    def __init__(self, feedback_bits):
        super(Decoder, self).__init__()
        self.feedback_bits = feedback_bits
        self.dequantize = DequantizationLayer(self.num_quan_bits)
        self.multiConvs = nn.ModuleList()
        self.fc = nn.Linear(int(feedback_bits / self.num_quan_bits), 768)
        self.out_cov = conv3x3(2, 2)
        self.sig = nn.Sigmoid()
        for _ in range(3):
            self.multiConvs.append(nn.Sequential(
                conv3x3(2, 8),
                nn.ReLU(),
                conv3x3(8, 16),
                nn.ReLU(),
                conv3x3(16, 2),
                nn.ReLU()))
    def forward(self, x):
        out = self.dequantize(x)
        out = out.contiguous().view(-1, int(self.feedback_bits / self.num_quan_bits)) #需使用contiguous().view(),或者可修改为reshape
        out = self.sig(self.fc(out))
        out = out.contiguous().view(-1, 2, 24, 16) #需使用contiguous().view(),或者可修改为reshape
        for i in range(3):
            residual = out
            out = self.multiConvs[i](out)
            out = residual + out
        out = self.out_cov(out)
        out = self.sig(out)
        out = out.permute(0, 2, 3, 1)
        return out