- Изучение классических трансформеров
- Статья перенесена из паблика WeChat [Machine Learning Alchemy]
- Автор: Чэнь Исинь (уполномоченный)
- Контактное лицо: WeChat cyx645016617
- Добро пожаловать, чтобы общаться и добиваться прогресса вместе
[TOC]
Подробно о коде
transformer
class transformer(nn.Sequential):
def __init__(self, encoding, **config):
super(transformer, self).__init__()
if encoding == 'drug':
self.emb = Embeddings(config['input_dim_drug'], config['transformer_emb_size_drug'], 50, config['transformer_dropout_rate'])
self.encoder = Encoder_MultipleLayers(config['transformer_n_layer_drug'],
config['transformer_emb_size_drug'],
config['transformer_intermediate_size_drug'],
config['transformer_num_attention_heads_drug'],
config['transformer_attention_probs_dropout'],
config['transformer_hidden_dropout_rate'])
elif encoding == 'protein':
self.emb = Embeddings(config['input_dim_protein'], config['transformer_emb_size_target'], 545, config['transformer_dropout_rate'])
self.encoder = Encoder_MultipleLayers(config['transformer_n_layer_target'],
config['transformer_emb_size_target'],
config['transformer_intermediate_size_target'],
config['transformer_num_attention_heads_target'],
config['transformer_attention_probs_dropout'],
config['transformer_hidden_dropout_rate'])
### parameter v (tuple of length 2) is from utils.drug2emb_encoder
def forward(self, v):
e = v[0].long().to(device)
e_mask = v[1].long().to(device)
print(e.shape,e_mask.shape)
ex_e_mask = e_mask.unsqueeze(1).unsqueeze(2)
ex_e_mask = (1.0 - ex_e_mask) * -10000.0
emb = self.emb(e)
encoded_layers = self.encoder(emb.float(), ex_e_mask.float())
return encoded_layers[:,0]
- Пока есть два компонента, один — это уровень внедрения, а другой — модуль Encoder_MultipleLayers;
- Входные данные v для forward — это кортеж с двумя элементами: первый — это данные, а второй — маска. Соответствует местоположению действительных данных.
Embedding
class Embeddings(nn.Module):
"""Construct the embeddings from protein/target, position embeddings.
"""
def __init__(self, vocab_size, hidden_size, max_position_size, dropout_rate):
super(Embeddings, self).__init__()
self.word_embeddings = nn.Embedding(vocab_size, hidden_size)
self.position_embeddings = nn.Embedding(max_position_size, hidden_size)
self.LayerNorm = nn.LayerNorm(hidden_size)
self.dropout = nn.Dropout(dropout_rate)
def forward(self, input_ids):
seq_length = input_ids.size(1)
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
words_embeddings = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
embeddings = words_embeddings + position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
- Содержит три компонента: один Embedding, другой LayerNorm и слой Dropout.
torch.nn.Embedding(num_embeddings, embedding_dim, padding_idx=None,
max_norm=None, norm_type=2.0, scale_grad_by_freq=False,
sparse=False, _weight=None)
Это простая таблица поиска, в которой хранится вектор внедрения словаря фиксированного размера, что означает, что при заданном числе уровень внедрения может вернуть вектор внедрения, соответствующий этому числу, а вектор внедрения отражает семантику между представленными символами. по каждому номеру отношения.
Входные данные представляют собой пронумерованный список, а выходные данные представляют собой список соответствующих символьных векторов вложения.
- num_embeddings (python:int) — размер словаря, например, если всего 5000 слов, введите 5000. В настоящее время индекс (0-4999)
- embedding_dim (python:int) — размерность вектора встраивания, то есть сколько измерений используется для представления символа.
- padding_idx (python:int, необязательный) — идентификатор заполнения, например, длина ввода 100, но длина каждого предложения разная, его нужно заполнить единым числом, и это число указывается здесь, чтобы сетевые встречи К моменту заполнения идентификатора его корреляция с другими символами не рассчитывается. (инициализировано до 0)
- max_norm (python:float, необязательный) — максимальная норма, если норма вектора встраивания превышает этот предел, будет выполнена перенормировка.
- norm_type (python: float, необязательный) — укажите, какую норму использовать и сравнить с max_norm, по умолчанию — 2 нормы.
- scale_grad_by_freq (логическое значение, необязательно) — масштабирование градиента в зависимости от того, как часто слова появляются в мини-пакете. По умолчанию имеет значение Ложь.
- разреженный (логический, необязательный) — если True, градиенты, связанные с матрицей весов, превращаются в разреженные тензоры.
например:
Если ваш целочисленный максимум превышает емкость установленного словаря, то произойдет ошибка:
- Встраивание имеет обучаемые параметры! представляет собой матрицу num_embedding * embedding_dim.
Encoder_MultipleLayers
class Encoder_MultipleLayers(nn.Module):
def __init__(self, n_layer, hidden_size, intermediate_size, num_attention_heads, attention_probs_dropout_prob, hidden_dropout_prob):
super(Encoder_MultipleLayers, self).__init__()
layer = Encoder(hidden_size, intermediate_size, num_attention_heads, attention_probs_dropout_prob, hidden_dropout_prob)
self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(n_layer)])
def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True):
all_encoder_layers = []
for layer_module in self.layer:
hidden_states = layer_module(hidden_states, attention_mask)
return hidden_states
- Целью встраивания в трансформатор является преобразование данных в соответствующие векторы. Этот многослойный кодировщик является ключом к извлечению признаков.
- Структура очень простая, то есть формируется путем стекирования ==n_layer== Encoders.
Encoder
class Encoder(nn.Module):
def __init__(self, hidden_size, intermediate_size, num_attention_heads, attention_probs_dropout_prob, hidden_dropout_prob):
super(Encoder, self).__init__()
self.attention = Attention(hidden_size, num_attention_heads, attention_probs_dropout_prob, hidden_dropout_prob)
self.intermediate = Intermediate(hidden_size, intermediate_size)
self.output = Output(intermediate_size, hidden_size, hidden_dropout_prob)
def forward(self, hidden_states, attention_mask):
attention_output = self.attention(hidden_states, attention_mask)
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
- Он содержит раздел «Внимание», «Промежуточный этап» и «Вывод».
class Attention(nn.Module):
def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob, hidden_dropout_prob):
super(Attention, self).__init__()
self.self = SelfAttention(hidden_size, num_attention_heads, attention_probs_dropout_prob)
self.output = SelfOutput(hidden_size, hidden_dropout_prob)
def forward(self, input_tensor, attention_mask):
self_output = self.self(input_tensor, attention_mask)
attention_output = self.output(self_output, input_tensor)
return attention_output
class SelfAttention(nn.Module):
def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob):
super(SelfAttention, self).__init__()
if hidden_size % num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (hidden_size, num_attention_heads))
self.num_attention_heads = num_attention_heads
self.attention_head_size = int(hidden_size / num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(hidden_size, self.all_head_size)
self.key = nn.Linear(hidden_size, self.all_head_size)
self.value = nn.Linear(hidden_size, self.all_head_size)
self.dropout = nn.Dropout(attention_probs_dropout_prob)
def transpose_for_scores(self, x):
# num_attention_heads = 8, attention_head_size = 128 / 8 = 16
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask):
# hidden_states.shape = [batch,50,128]
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
# query_layer.shape = [batch,8,50,16]
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
# attention_score.shape = [batch,8,50,50]
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer
Этот раздел аналогичен общему процессу обработки вит. Хотя преобразователь из НЛП в CV, также приятно оглянуться на преобразователь НЛП из vit CV. На что следует обратить внимание, так это на концепцию мультиголовки. Первоначально hidden-size равен 128. Если количество мультиголовок установлено равным 8, это на самом деле равно количеству каналов в свертке. Жетон 128 будет расцениваться как 8 жетонов из 16, а затем соответственно делать самостоятельные действия. Но сравнение multihead с концепцией свертки кажется прошлым, и кажется нормальным сравнивать его с концепцией групповой свертки:
- Сравните со сверткой. Если размер каждой головки фиксирован на 16, то голова равна количеству каналов, тогда увеличение количества голов фактически увеличивает количество каналов ядра свертки;
- Сравните с групповой сверткой. Если количество скрытых размеров фиксировано на 128, то количество головок равно количеству групп, тогда увеличение количества головок похоже на увеличение количества групп свертки, уменьшая объем вычислений.
-Остальные части кода FC + LayerNorm + Dropout, поэтому я не буду их повторять.
полный код
import torch.nn as nn
import torch.nn.functional as F
import copy,math
class Embeddings(nn.Module):
"""Construct the embeddings from protein/target, position embeddings.
"""
def __init__(self, vocab_size, hidden_size, max_position_size, dropout_rate):
super(Embeddings, self).__init__()
self.word_embeddings = nn.Embedding(vocab_size, hidden_size)
self.position_embeddings = nn.Embedding(max_position_size, hidden_size)
self.LayerNorm = nn.LayerNorm(hidden_size)
self.dropout = nn.Dropout(dropout_rate)
def forward(self, input_ids):
seq_length = input_ids.size(1)
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
words_embeddings = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
embeddings = words_embeddings + position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class Encoder_MultipleLayers(nn.Module):
def __init__(self, n_layer, hidden_size, intermediate_size, num_attention_heads, attention_probs_dropout_prob, hidden_dropout_prob):
super(Encoder_MultipleLayers, self).__init__()
layer = Encoder(hidden_size, intermediate_size, num_attention_heads, attention_probs_dropout_prob, hidden_dropout_prob)
self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(n_layer)])
def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True):
all_encoder_layers = []
for layer_module in self.layer:
hidden_states = layer_module(hidden_states, attention_mask)
#if output_all_encoded_layers:
# all_encoder_layers.append(hidden_states)
#if not output_all_encoded_layers:
# all_encoder_layers.append(hidden_states)
return hidden_states
class Encoder(nn.Module):
def __init__(self, hidden_size, intermediate_size, num_attention_heads, attention_probs_dropout_prob, hidden_dropout_prob):
super(Encoder, self).__init__()
self.attention = Attention(hidden_size, num_attention_heads, attention_probs_dropout_prob, hidden_dropout_prob)
self.intermediate = Intermediate(hidden_size, intermediate_size)
self.output = Output(intermediate_size, hidden_size, hidden_dropout_prob)
def forward(self, hidden_states, attention_mask):
attention_output = self.attention(hidden_states, attention_mask)
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class Attention(nn.Module):
def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob, hidden_dropout_prob):
super(Attention, self).__init__()
self.self = SelfAttention(hidden_size, num_attention_heads, attention_probs_dropout_prob)
self.output = SelfOutput(hidden_size, hidden_dropout_prob)
def forward(self, input_tensor, attention_mask):
self_output = self.self(input_tensor, attention_mask)
attention_output = self.output(self_output, input_tensor)
return attention_output
class SelfAttention(nn.Module):
def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob):
super(SelfAttention, self).__init__()
if hidden_size % num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (hidden_size, num_attention_heads))
self.num_attention_heads = num_attention_heads
self.attention_head_size = int(hidden_size / num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(hidden_size, self.all_head_size)
self.key = nn.Linear(hidden_size, self.all_head_size)
self.value = nn.Linear(hidden_size, self.all_head_size)
self.dropout = nn.Dropout(attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask):
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer
class SelfOutput(nn.Module):
def __init__(self, hidden_size, hidden_dropout_prob):
super(SelfOutput, self).__init__()
self.dense = nn.Linear(hidden_size, hidden_size)
self.LayerNorm = nn.LayerNorm(hidden_size)
self.dropout = nn.Dropout(hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class Intermediate(nn.Module):
def __init__(self, hidden_size, intermediate_size):
super(Intermediate, self).__init__()
self.dense = nn.Linear(hidden_size, intermediate_size)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = F.relu(hidden_states)
return hidden_states
class Output(nn.Module):
def __init__(self, intermediate_size, hidden_size, hidden_dropout_prob):
super(Output, self).__init__()
self.dense = nn.Linear(intermediate_size, hidden_size)
self.LayerNorm = nn.LayerNorm(hidden_size)
self.dropout = nn.Dropout(hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class transformer(nn.Sequential):
def __init__(self, encoding, **config):
super(transformer, self).__init__()
if encoding == 'drug':
self.emb = Embeddings(config['input_dim_drug'], config['transformer_emb_size_drug'], 50, config['transformer_dropout_rate'])
self.encoder = Encoder_MultipleLayers(config['transformer_n_layer_drug'],
config['transformer_emb_size_drug'],
config['transformer_intermediate_size_drug'],
config['transformer_num_attention_heads_drug'],
config['transformer_attention_probs_dropout'],
config['transformer_hidden_dropout_rate'])
elif encoding == 'protein':
self.emb = Embeddings(config['input_dim_protein'], config['transformer_emb_size_target'], 545, config['transformer_dropout_rate'])
self.encoder = Encoder_MultipleLayers(config['transformer_n_layer_target'],
config['transformer_emb_size_target'],
config['transformer_intermediate_size_target'],
config['transformer_num_attention_heads_target'],
config['transformer_attention_probs_dropout'],
config['transformer_hidden_dropout_rate'])
### parameter v (tuple of length 2) is from utils.drug2emb_encoder
def forward(self, v):
e = v[0].long().to(device)
e_mask = v[1].long().to(device)
print(e.shape,e_mask.shape)
ex_e_mask = e_mask.unsqueeze(1).unsqueeze(2)
ex_e_mask = (1.0 - ex_e_mask) * -10000.0
emb = self.emb(e)
encoded_layers = self.encoder(emb.float(), ex_e_mask.float())
return encoded_layers[:,0]