Очень интересно | 24 Расчет схожести предложений

Google искусственный интеллект Kaggle Medium
Очень интересно | 24 Расчет схожести предложений

Введение

Используйте Keras для реализации сиамской сети и расчета сходства предложений.

принцип

Сиамская сеть относится к двум или более идентичным подсетям в сети, которые в основном используются в таких задачах, как расчет схожести предложений, сопоставление лиц, идентификация подписи и т. д.

  • Расчет схожести предложений: введите два предложения, чтобы определить, имеют ли они одинаковое значение.
  • Сопоставление лиц: введите два лица, чтобы определить, являются ли они одним и тем же человеком.
  • Идентификация подписи: введите две подписи, чтобы определить, написаны ли они одним и тем же лицом.

Взяв в качестве примера расчет схожести предложений, подсети с обеих сторон абсолютно одинаковы от уровня внедрения до уровня LSTM.Вся модель называется MaLSTM (Manhattan LSTM).

语句相似度计算模型结构图

Представление двух предложений с фиксированной длиной получается через окончательный вывод слоя LSTM, и следующая формула используется для вычисления сходства между ними, и сходство находится между 0 и 1.

D=\exp{(-\left\| h^{(left)}-h^{(right)} \right\|_1)}

данные

Используйте вопросы Quora на Kaggle для сопоставления данных, Quora соответствует иностранному Zhihu,woohoo.cardreform.com/from/Quora-но…

Учебный набор и тестовый набор содержат 404290 и 3563475 фрагментов данных соответственно, каждый фрагмент данных включает следующие поля, но тестовый набор не включает поле is_duplicate.

  • id: идентификатор пары вопросов
  • qid1: идентификатор вопроса 1
  • qid2: идентификатор вопроса 2
  • вопрос1: текст вопроса 1
  • вопрос2: текст вопроса 2
  • is_duplicate: два вопроса означают одно и то же, 0 или 1

выполнить

загрузить библиотеку

# -*- coding: utf-8 -*-

from keras.preprocessing.sequence import pad_sequences
from keras.models import Model
from keras.layers import Input, Embedding, LSTM, Lambda
import keras.backend as K
from keras.optimizers import Adam

import pandas as pd
import numpy as np
from gensim.models import KeyedVectors
from nltk.corpus import stopwords
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
%matplotlib inline
import re
from tqdm import tqdm
import pickle

Загрузка обучающих и тестовых наборов

train_df = pd.read_csv('train.csv')
test_df = pd.read_csv('test.csv')
print(len(train_df), len(test_df))
train_df.head()

Загрузите стоп-слова в nltk (Natural Language Toolkit) и определите функцию предварительной обработки текста.

# 如果报错nltk没有stopwords则下载
# import nltk
# nltk.download('stopwords')

stops = set(stopwords.words('english'))

def preprocess(text):
    # input: 'Hello are you ok?'
    # output: ['Hello', 'are', 'you', 'ok', '?']
    text = str(text)
    text = text.lower()
    
    text = re.sub(r"[^A-Za-z0-9^,!.\/'+-=]", " ", text)  # 去掉其他符号
    text = re.sub(r"what's", "what is ", text)           # 缩写
    text = re.sub(r"\'s", " is ", text)                  # 缩写   
    text = re.sub(r"\'ve", " have ", text)               # 缩写
    text = re.sub(r"can't", "cannot ", text)             # 缩写
    text = re.sub(r"n't", " not ", text)                 # 缩写
    text = re.sub(r"i'm", "i am ", text)                 # 缩写
    text = re.sub(r"\'re", " are ", text)                # 缩写
    text = re.sub(r"\'d", " would ", text)               # 缩写
    text = re.sub(r"\'ll", " will ", text)               # 缩写
    text = re.sub(r",", " ", text)                       # 去除逗号
    text = re.sub(r"\.", " ", text)                      # 去除句号
    text = re.sub(r"!", " ! ", text)                     # 保留感叹号
    text = re.sub(r"\/", " ", text)                      # 去掉右斜杠
    text = re.sub(r"\^", " ^ ", text)                    # 其他符号
    text = re.sub(r"\+", " + ", text)                    # 其他符号
    text = re.sub(r"\-", " - ", text)                    # 其他符号
    text = re.sub(r"\=", " = ", text)                    # 其他符号
    text = re.sub(r"\'", " ", text)                      # 去掉单引号 
    text = re.sub(r"(\d+)(k)", r"\g<1>000", text)        # 把30k等替换成30000
    text = re.sub(r":", " : ", text)                     # 其他符号
    text = re.sub(r" e g ", " eg ", text)                # 其他词
    text = re.sub(r" b g ", " bg ", text)                # 其他词
    text = re.sub(r" u s ", " american ", text)          # 其他词
    text = re.sub(r"\0s", "0", text)                     # 其他词
    text = re.sub(r" 9 11 ", " 911 ", text)              # 其他词
    text = re.sub(r"e - mail", "email", text)            # 其他词
    text = re.sub(r"j k", "jk", text)                    # 其他词
    text = re.sub(r"\s{2,}", " ", text)                  # 将多个空白符替换成一个空格

    return text.split()

Загрузите предварительно обученный Google 300-мерный вектор слов

word2vec = KeyedVectors.load_word2vec_format('GoogleNews-vectors-negative300.bin.gz', binary=True)

Расположите словарь, всего 58564 слова, замените текст представлением целочисленной последовательности и получите матрицу векторного отображения слов.

vocabulary = []
word2id = {}
id2word = {}

for df in [train_df, test_df]:
    for i in tqdm(range(len(df))):
        row = df.iloc[i]
        for column in ['question1', 'question2']:
            q2n = []
            for word in preprocess(row[column]):
                if word in stops or word not in word2vec.vocab:
                    continue
                
                if word not in vocabulary:
                    word2id[word] = len(vocabulary) + 1
                    id2word[len(vocabulary) + 1] = word
                    vocabulary.append(word)
                    q2n.append(word2id[word])
                else:
                    q2n.append(word2id[word])
            
            df.at[i, column] = q2n

embedding_dim = 300
embeddings = np.random.randn(len(vocabulary) + 1, embedding_dim)
embeddings[0] = 0  # 零填充对应的词向量

for index, word in enumerate(vocabulary):
    embeddings[index] = word2vec.word_vec(word)

del word2vec
print(len(vocabulary))

Разделите набор для обучения и набор для проверки, дополнив целочисленную последовательность до одинаковой длины.

maxlen = max(train_df.question1.map(lambda x: len(x)).max(),
             train_df.question2.map(lambda x: len(x)).max(),
             test_df.question1.map(lambda x: len(x)).max(),
             test_df.question2.map(lambda x: len(x)).max())

valid_size = 40000
train_size = len(train_df) - valid_size

X = train_df[['question1', 'question2']]
Y = train_df['is_duplicate']

X_train, X_valid, Y_train, Y_valid = train_test_split(X, Y, test_size=valid_size)
X_train = {'left': X_train.question1.values, 'right': X_train.question2.values}
X_valid = {'left': X_valid.question1.values, 'right': X_valid.question2.values}
Y_train = np.expand_dims(Y_train.values, axis=-1)
Y_valid = np.expand_dims(Y_valid.values, axis=-1)

# 前向填充或截断
X_train['left'] = np.array(pad_sequences(X_train['left'], maxlen=maxlen))
X_train['right'] = np.array(pad_sequences(X_train['right'], maxlen=maxlen))
X_valid['left'] = np.array(pad_sequences(X_valid['left'], maxlen=maxlen))
X_valid['right'] = np.array(pad_sequences(X_valid['right'], maxlen=maxlen))

print(X_train['left'].shape, X_train['right'].shape)
print(X_valid['left'].shape, X_valid['right'].shape)
print(Y_train.shape, Y_valid.shape)

Определите модель и обучение

hidden_size = 128
gradient_clipping_norm = 1.25
batch_size = 64
epochs = 20

def exponent_neg_manhattan_distance(args):
    left, right = args
    return K.exp(-K.sum(K.abs(left - right), axis=1, keepdims=True))

left_input = Input(shape=(None,), dtype='int32')
right_input = Input(shape=(None,), dtype='int32')

embedding_layer = Embedding(len(embeddings), embedding_dim, weights=[embeddings], input_length=maxlen, trainable=False)

embedded_left = embedding_layer(left_input)
embedded_right = embedding_layer(right_input)

shared_lstm = LSTM(hidden_size)

left_output = shared_lstm(embedded_left)
right_output = shared_lstm(embedded_right)

malstm_distance = Lambda(exponent_neg_manhattan_distance, output_shape=(1,))([left_output, right_output])

malstm = Model([left_input, right_input], malstm_distance)

optimizer = Adam(clipnorm=gradient_clipping_norm)
malstm.compile(loss='mean_squared_error', optimizer=optimizer, metrics=['accuracy'])

history = malstm.fit([X_train['left'], X_train['right']], Y_train, batch_size=batch_size, epochs=epochs,
                     validation_data=([X_valid['left'], X_valid['right']], Y_valid))

Постройте кривую точности и кривую функции потерь во время обучения

# Plot Accuracy
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('Model Accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Train', 'Validation'], loc='upper left')
plt.show()

# Plot Loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model Loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Validation'], loc='upper right')
plt.show()

Потери обучающего набора продолжают уменьшаться, но потери проверочного набора имеют тенденцию быть плоскими, что указывает на то, что способности модели к обобщению недостаточно.

MaLSTM模型训练损失

Правильная скорость обучающего набора увеличилась до более чем 86%, в то время как правильная скорость набора проверки осталась на уровне около 80%, и модель нуждается в дальнейшем улучшении.

MaLSTM模型训练正确率

Сохраните модель для последующего использования

malstm.save('malstm.h5')
with open('data.pkl', 'wb') as fw:
    pickle.dump({'word2id': word2id, 'id2word': id2word}, fw)

Используйте обученную модель на одной машине, чтобы выполнить простой тест, случайным образом возьмите несколько образцов из обучающего набора и посмотрите, соответствует ли результат классификации модели метке, в основном, чтобы знать, как применять модель для вывода.

# -*- coding: utf-8 -*-

from keras.preprocessing.sequence import pad_sequences
from keras.models import Model, load_model
import pandas as pd
import numpy as np
from nltk.corpus import stopwords
import re
import pickle

with open('data.pkl', 'rb') as fr:
    data = pickle.load(fr)
    word2id = data['word2id']
    id2word = data['id2word']

train_df = pd.read_csv('train.csv')

stops = set(stopwords.words('english'))
def preprocess(text):
    # input: 'Hello are you ok?'
    # output: ['Hello', 'are', 'you', 'ok', '?']
    text = str(text)
    text = text.lower()
    
    text = re.sub(r"[^A-Za-z0-9^,!.\/'+-=]", " ", text)  # 去掉其他符号
    text = re.sub(r"what's", "what is ", text)           # 缩写
    text = re.sub(r"\'s", " is ", text)                  # 缩写   
    text = re.sub(r"\'ve", " have ", text)               # 缩写
    text = re.sub(r"can't", "cannot ", text)             # 缩写
    text = re.sub(r"n't", " not ", text)                 # 缩写
    text = re.sub(r"i'm", "i am ", text)                 # 缩写
    text = re.sub(r"\'re", " are ", text)                # 缩写
    text = re.sub(r"\'d", " would ", text)               # 缩写
    text = re.sub(r"\'ll", " will ", text)               # 缩写
    text = re.sub(r",", " ", text)                       # 去除逗号
    text = re.sub(r"\.", " ", text)                      # 去除句号
    text = re.sub(r"!", " ! ", text)                     # 保留感叹号
    text = re.sub(r"\/", " ", text)                      # 去掉右斜杠
    text = re.sub(r"\^", " ^ ", text)                    # 其他符号
    text = re.sub(r"\+", " + ", text)                    # 其他符号
    text = re.sub(r"\-", " - ", text)                    # 其他符号
    text = re.sub(r"\=", " = ", text)                    # 其他符号
    text = re.sub(r"\'", " ", text)                      # 去掉单引号 
    text = re.sub(r"(\d+)(k)", r"\g<1>000", text)        # 把30k等替换成30000
    text = re.sub(r":", " : ", text)                     # 其他符号
    text = re.sub(r" e g ", " eg ", text)                # 其他词
    text = re.sub(r" b g ", " bg ", text)                # 其他词
    text = re.sub(r" u s ", " american ", text)          # 其他词
    text = re.sub(r"\0s", "0", text)                     # 其他词
    text = re.sub(r" 9 11 ", " 911 ", text)              # 其他词
    text = re.sub(r"e - mail", "email", text)            # 其他词
    text = re.sub(r"j k", "jk", text)                    # 其他词
    text = re.sub(r"\s{2,}", " ", text)                  # 将多个空白符替换成一个空格

    return text.split()

malstm = load_model('malstm.h5')
correct = 0
for i in range(5):
    print('Testing Case:', i + 1)
    random_sample = dict(train_df.iloc[np.random.randint(len(train_df))])
    left = random_sample['question1']
    right = random_sample['question2']
    print('Origin Questions...')
    print('==', left)
    print('==', right)

    left = preprocess(left)
    right = preprocess(right)
    print('Preprocessing...')
    print('==', left)
    print('==', right)

    left = [word2id[w] for w in left if w in word2id]
    right = [word2id[w] for w in right if w in word2id]
    print('To ids...')
    print('==', left, [id2word[i] for i in left])
    print('==', right, [id2word[i] for i in right])

    left = np.expand_dims(left, 0)
    right = np.expand_dims(right, 0)
    maxlen = max(left.shape[-1], right.shape[-1])
    left = pad_sequences(left, maxlen=maxlen)
    right = pad_sequences(right, maxlen=maxlen)

    print('Padding...')
    print('==', left.shape)
    print('==', right.shape)

    pred = malstm.predict([left, right])
    pred = 1 if pred[0][0] > 0.5 else 0
    print('True:', random_sample['is_duplicate'])
    print('Pred:', pred)
    if pred == random_sample['is_duplicate']:
        correct += 1
print(correct / 5)

Ссылаться на

видеоурок

Глубоко и интересно (1)