Преобразование Labelme в набор данных yolov3

искусственный интеллект

from os import getcwd
import os
import json
import glob
wd = getcwd()
«Набор данных JSON, отмеченные LABLEME, преобразуется в тренировочный набор yolov3 keras версии»
classes = ["aircraft","oiltank"]

image_ids = glob.glob(r"LabelmeData/*jpg")
print(image_ids)
list_file = open('train.txt', 'w')

def convert_annotation(image_id, list_file):
jsonfile=open('%s.json' % (image_id))
in_file = json.load(jsonfile)

    for i in range(0,len(in_file["shapes"])):
object=in_file["shapes"][i]
cls=object["label"]
points=object["points"]
xmin=int(points[0][0])
ymin=int(points[0][1])
xmax=int(points[1][0])
ymax=int(points[1][1])
if cls not in classes:
print("cls not in classes")
continue
cls_id = classes.index(cls)
b = (xmin, ymin, xmax, ymax)
list_file.write(" " + ",".join([str(a) for a in b]) + ',' + str(cls_id))
jsonfile.close()
for image_id in image_ids:
list_file.write('%s.jpg' % (image_id.split('.')[0]))
convert_annotation(image_id.split('.')[0], list_file)
list_file.write('\n')
list_file.close()