Пример классификации проверки хорошего и плохого качества Python

Python

Актуальная задача классификации проверки хорошего или плохого качества:

1. На основе данных data_class_raw.csv, согласно функции плотности вероятности распределения Гаусса, найти выбросы и устранить их 2. На основе данных data_class_processed.csv выполните обработку PCA, чтобы определить важные измерения и компоненты данных. 3. Полное разделение данных, параметры разделения данных: random_state=4, test_size=0.4 4. Создайте модель KNN для завершения классификации, возьмите 10 для n_neighbors, рассчитайте точность классификации и визуализируйте границу классификации. 5. Рассчитайте матрицу путаницы, соответствующую набору тестовых данных, вычислите коэффициент точности, коэффициент отзыва, специфичность, коэффициент точности и балл F1. 6. Попробуйте разные n_neighbors (1-20), рассчитайте их точность на наборе обучающих данных и наборе тестовых данных и постройте их.

#load the data
import pandas as pd
import numpy as np
data = pd.read_csv('data_class_raw.csv')
data.head()
x1 x2 y
0 0.77 3.97 0
1 1.71 2.81 0
2 2.18 1.31 0
3 3.80 0.69 0
4 5.21 1.14 0
#define X and y
X = data.drop(['y'],axis=1)
y = data.loc[:,'y']
pandas.core.frame.DataFrame
#训练集数据可视化
%matplotlib inline
from matplotlib import pyplot as plt
fig1 = plt.figure(figsize=(5,5))
bad = plt.scatter(X.loc[:,'x1'][y==0],X.loc[:,'x2'][y==0])
good = plt.scatter(X.loc[:,'x1'][y==1],X.loc[:,'x2'][y==1])
plt.legend((good,bad),('good','bad'))
plt.title('raw data')
plt.xlabel('x1')
plt.ylabel('x2')
plt.show()

gqVqxS.png

#异常检测
from sklearn.covariance import EllipticEnvelope
ad_model = EllipticEnvelope(contamination=0.02)
ad_model.fit(X[y==0])#喂给异常数据进行训练
y_predict_bad = ad_model.predict(X[y==0])
print(y_predict_bad)
[ 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 -1]
fig2 = plt.figure(figsize=(5,5))
bad = plt.scatter(X.loc[:,'x1'][y==0],X.loc[:,'x2'][y==0])
good = plt.scatter(X.loc[:,'x1'][y==1],X.loc[:,'x2'][y==1])
#重复上面的画图,标出异常点,并剔除
plt.scatter(X.loc[:,'x1'][y==0][y_predict_bad==-1],X.loc[:,'x2'][y==0][y_predict_bad==-1],marker='x',s=150)
plt.legend((good,bad),('good','bad'))
plt.title('raw data')
plt.xlabel('x1')
plt.ylabel('x2')
plt.show()

gqVxVs.png

#基于data_class_processed.csv数据,进行PCA处理,确定重要数据维度及成分
data = pd.read_csv('data_class_processed.csv')
data.head()
#define X and y
X = data.drop(['y'],axis=1)
y = data.loc[:,'y']
#pca 
from sklearn.preprocessing import StandardScaler  
from sklearn.decomposition import PCA  
X_norm = StandardScaler().fit_transform(X) #标准化处理
pca = PCA(n_components=2) #创建一个PCA实例
X_reduced = pca.fit_transform(X_norm) #降维并标准化
var_ratio = pca.explained_variance_ratio_ #各个主成分的标准差的比例
print(var_ratio)
fig4 = plt.figure(figsize=(5,5))
plt.bar([1,2],var_ratio)
plt.show() #从结果可看出两个主成分的比例都比较高,不用再降维了
[0.51664723 0.48335277]

gqVzan.png

# 完成数据分离,数据分离参数:random_state=4,test_size=0.4
from sklearn.model_selection import train_test_split
#其中random_state是随机数种子,填0或不填,每次都会不一样;test_size:如果是浮点数,在0-1之间,表示样本占比;如果是整数的话就是样本的数量
X_train, X_test, y_train, y_test = train_test_split(X,y,random_state=4,test_size=0.4)
print(X_train.shape,X_test.shape,X.shape)
#从结果看出原数据被拆分成21组训练数据和14组测试数据
(21, 2) (15, 2) (36, 2)
#建立KNN模型完成分类,n_neighbors取10,计算分类准确率,可视化分类边界
from sklearn.neighbors import KNeighborsClassifier
knn_10 = KNeighborsClassifier(n_neighbors=10)
knn_10.fit(X_train,y_train)
y_train_predict = knn_10.predict(X_train)
y_test_predict = knn_10.predict(X_test)

#calculate the accuracy
from sklearn.metrics import accuracy_score
accuracy_train = accuracy_score(y_train,y_train_predict)
accuracy_test = accuracy_score(y_test,y_test_predict)
print("trianing accuracy:",accuracy_train)
print('testing accuracy:',accuracy_test)
trianing accuracy: 0.9047619047619048
testing accuracy: 0.5333333333333333
#visualize the knn result and boundary画网格
xx, yy = np.meshgrid(np.arange(0,10,0.05),np.arange(0,10,0.05))
print(yy.shape) 
(200, 200)
x_range = np.c_[xx.ravel(),yy.ravel()]#生成网格数据 
print(x_range.shape)
(40000, 2)
y_range_predict = knn_10.predict(x_range)
fig4 = plt.figure(figsize=(10,10))
knn_bad = plt.scatter(x_range[:,0][y_range_predict==0],x_range[:,1][y_range_predict==0])
knn_good = plt.scatter(x_range[:,0][y_range_predict==1],x_range[:,1][y_range_predict==1])

bad = plt.scatter(X.loc[:,'x1'][y==0],X.loc[:,'x2'][y==0])
good = plt.scatter(X.loc[:,'x1'][y==1],X.loc[:,'x2'][y==1])
plt.legend((good,bad,knn_good,knn_bad),('good','bad','knn_good','knn_bad'))
plt.title('prediction result')
plt.xlabel('x1')
plt.ylabel('x2')
plt.show()

gqZCGV.png

#计算测试数据集对应的混淆矩阵,计算准确率、召回率、特异度、精确率、F1分数
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test,y_test_predict)
print(cm)
[[4 3]
 [4 4]]
#一级指标 TP、FN、FP、TN
TP = cm[1,1]
TN = cm[0,0]
FP = cm[0,1]
FN = cm[1,0]
print(TP,TN,FP,FN)
4 4 3 4
#二级指标——准确率(Accuracy)、精确率(Precision)、召回率(Recall)、特异度(Specificity)
#通过上面的四个二级指标,可以将混淆矩阵中数量的结果转化为0-1之间的比率。便于进行标准化的衡量

Точность:В общей выборке пропорция правильного количества предсказанных выборок

  • Accuracy = (TP + TN)/(TP + TN + FP + FN)
accuracy = (TP + TN)/(TP + TN + FP + FN)
print(accuracy)
0.6428571428571429

Чувствительность (отзыв):В положительных выборках доля правильных предсказаний

  • Sensitivity = Recall = TP/(TP + FN)
recall = TP/(TP + FN)
print(recall)
0.625

Специфика:В отрицательных выборках доля правильных предсказаний

  • Specificity = TN/(TN + FP)
specificity = TN/(TN + FP)
print(specificity)
0.6666666666666666

Точность:Среди выборок с положительными результатами предсказания доля правильных предсказаний

  • Precision = TP/(TP + FP)
precision = TP/(TP + FP)
print(precision)
0.5714285714285714
#三级指标——F1-Score的取值范围从0到1的,1代表模型的输出最好,0代表模型的输出结果最差

Оценка F1:Индикатор суждения, объединяющий Precision и Recall

  • F1 Score = 2*Precision X Recall/(Precision + Recall)
f1 = 2*precision*recall/(precision+recall)
print(f1)
0.6666666666666666
#尝试不同的n_neighbors(1-20),计算其在训练数据集、测试数据集上的准确率并作图
n = [i for i in range(1,21)]#生成1到20的数组
accuracy_train = []
accuracy_test = []
for i in n:
    knn = KNeighborsClassifier(n_neighbors=i)
    knn.fit(X_train,y_train)
    y_train_predict = knn.predict(X_train)
    y_test_predict = knn.predict(X_test)
    accuracy_train_i = accuracy_score(y_train,y_train_predict)
    accuracy_test_i = accuracy_score(y_test,y_test_predict)
    accuracy_train.append(accuracy_train_i)
    accuracy_test.append(accuracy_test_i)
fig5 = plt.figure(figsize=(12,5))
plt.subplot(121)
plt.plot(n,accuracy_train,marker='o')
plt.title('training accuracy vs n_neighbors')
plt.xlabel('n_neighbors')
plt.ylabel('accuracy')
plt.subplot(122)
plt.plot(n,accuracy_test,marker='o')
plt.title('testing accuracy vs n_neighbors')
plt.xlabel('n_neighbors')
plt.ylabel('accuracy')
plt.show()

gqZZZ9.png

Фактическая боевая классификация проверки хорошего или плохого качества:

1. Обнаружение аномалий помогает найти потенциальные аномальные точки данных; 2. С помощью анализа PCA установлено, что необходимо сохранить двумерный набор данных; 3. Реализовать разделение данных обучения и тестовых данных и рассчитать точность прогнозирования модели для тестовых данных. 4. Рассчитайте матрицу путаницы, чтобы получить более полную оценку модели. 5. С помощью нового метода визуализируется граница решения классификации. 6. Регулировка значения основного параметра n_neighbors при расчете соответствующей точности может помочь нам лучше определить, какую модель использовать.