Python играет с искусственным интеллектом: сколько подтягиваний вы можете сделать?

Python

Google выпустил кроссплатформенный и настраиваемый набор инструментов для машинного обучения с открытым исходным кодом, который предоставляет решения для машинного обучения для потоковой передачи в Интернете (конечно, его также можно использовать для обычных видео, изображений и т. д.). Заинтересованные студенты могут открыть этот веб-сайт для получения подробной информации:mediapipe.dev/

image-20210422112313073.png

Он предоставляет функции распознавания и отслеживания, такие как жесты, позы человека, лица, объекты и т. д., а также предоставляет наборы инструментов для таких языков программирования, как C++, Python и JavaScript, а также решения для платформ iOS и Android. взгляните на то, как использовать MediaPipe Предоставленная функция распознавания человеческих жестов использует программирование Python для завершения программы «обнаружения подтягивания».

На компьютер необходимо установить Python3, и рекомендуется установить версию Python3.8.x. Кроме того, вам также необходимо установить Opencv-Python, MediaPipe и несколько наборов инструментов, которые можно установить с помощью pip:

pip install mediapipe numpy opencv-python

Мой компьютер - Python3.8.3, а версии инструментария:

mediapipe==0.8.3.1
numpy==1.20.2
opencv-python==4.5.1.48

Напишите модуль poseutil.py, этот модуль postutil имеет класс PoseDetector, который предоставляет методы для обнаружения человеческих поз, получения данных о человеческих позах и получения углов человеческих суставов. Код выглядит следующим образом, подробности смотрите в комментариях к коду:

import cv2
import mediapipe as mp
import math

class PoseDetector():
    '''
    人体姿势检测类
    '''
    def __init__(self,
                 static_image_mode=False,
                 upper_body_only=False,
                 smooth_landmarks=True,
                 min_detection_confidence=0.5,
                 min_tracking_confidence=0.5):
        '''
        初始化
        :param static_image_mode: 是否是静态图片,默认为否
        :param upper_body_only: 是否是上半身,默认为否
        :param smooth_landmarks: 设置为True减少抖动
        :param min_detection_confidence:人员检测模型的最小置信度值,默认为0.5
        :param min_tracking_confidence:姿势可信标记的最小置信度值,默认为0.5
        '''
        self.static_image_mode = static_image_mode
        self.upper_body_only = upper_body_only
        self.smooth_landmarks = smooth_landmarks
        self.min_detection_confidence = min_detection_confidence
        self.min_tracking_confidence = min_tracking_confidence
        # 创建一个Pose对象用于检测人体姿势
        self.pose = mp.solutions.pose.Pose(self.static_image_mode, self.upper_body_only, self.smooth_landmarks,
                                           self.min_detection_confidence, self.min_tracking_confidence)

    def find_pose(self, img, draw=True):
        '''
        检测姿势方法
        :param img: 一帧图像
        :param draw: 是否画出人体姿势节点和连接图
        :return: 处理过的图像
        '''
        imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        # pose.process(imgRGB) 会识别这帧图片中的人体姿势数据,保存到self.results中
        self.results = self.pose.process(imgRGB)
        if self.results.pose_landmarks:
            if draw:
                mp.solutions.drawing_utils.draw_landmarks(img, self.results.pose_landmarks,
                                                          mp.solutions.pose.POSE_CONNECTIONS)
        return img

    def find_positions(self, img):
        '''
        获取人体姿势数据
        :param img: 一帧图像
        :param draw: 是否画出人体姿势节点和连接图
        :return: 人体姿势数据列表
        '''
        # 人体姿势数据列表,每个成员由3个数字组成:id, x, y
        # id代表人体的某个关节点,x和y代表坐标位置数据
        self.lmslist = []
        if self.results.pose_landmarks:
            for id, lm in enumerate(self.results.pose_landmarks.landmark):
                h, w, c = img.shape
                cx, cy = int(lm.x * w), int(lm.y * h)
                self.lmslist.append([id, cx, cy])

        return self.lmslist

    def find_angle(self, img, p1, p2, p3, draw=True):
        '''
        获取人体姿势中3个点p1-p2-p3的角度
        :param img: 一帧图像
        :param p1: 第1个点
        :param p2: 第2个点
        :param p3: 第3个点
        :param draw: 是否画出3个点的连接图
        :return: 角度
        '''
        x1, y1 = self.lmslist[p1][1], self.lmslist[p1][2]
        x2, y2 = self.lmslist[p2][1], self.lmslist[p2][2]
        x3, y3 = self.lmslist[p3][1], self.lmslist[p3][2]

        # 使用三角函数公式获取3个点p1-p2-p3,以p2为角的角度值,0-180度之间
        angle = int(math.degrees(math.atan2(y1-y2, x1-x2) - math.atan2(y3-y2, x3-x2)))
        if angle < 0:
            angle = angle + 360
        if angle > 180:
            angle = 360 - angle

        if draw:
            cv2.circle(img, (x1, y1), 8, (0, 255, 255), cv2.FILLED)
            cv2.circle(img, (x2, y2), 15, (255, 0, 255), cv2.FILLED)
            cv2.circle(img, (x3, y3), 8, (0, 255, 255), cv2.FILLED)
            cv2.line(img, (x1, y1), (x2, y2), (255, 255, 255, 3))
            cv2.line(img, (x2, y2), (x3, y3), (255, 255, 255, 3))
            #cv2.putText(img, str(angle), (x2-50, y2+50),cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 255), 2)

        return angle

Напишите еще один код posetracking.py.В этом коде вызовите метод, предоставляемый классом PoseDetector файла poseutil.py, чтобы получить угол сгиба левого и правого локтя человеческого тела из видео подтягивания (или видео в реальном времени). видео с камеры). Предположим, мы используем Угол локтя от 170 градусов (при полном расслаблении) до 20 градусов (при подтягивании вверх) для определения стандартного подтягивания, чтобы мы могли определить количество стандартных подтягиваний завершено.

pose_tracking_full_body_landmarks.png

Из рисунка выше видно, что три точки 11, 13 и 15 — это узлы левого плеча, локтя и запястья, а 12, 14 и 16 — узлы правой руки. Полный код выглядит следующим образом:

import cv2
import numpy as np
from poseutil import PoseDetector

# opencv打开一个视频
cap = cv2.VideoCapture('mp4/1.mp4')
# 创建一个PoseDetector类的对象
detector = PoseDetector()
# 方向和完成次数的变量
dir = 0
count = 0

while True:
    # 读取视频图片帧
    success, img = cap.read()
    if success:
        # 检测视频图片帧中人体姿势
        img = detector.find_pose(img, draw=True)
        # 获取人体姿势列表数据
        lmslist = detector.find_positions(img)

        # 右手肘的角度
        right_angle = detector.find_angle(img, 12, 14, 16)
        # 以170到20度检测右手肘弯曲的程度
        right_per = np.interp(right_angle, (20, 170), (100, 0))
        # 进度条高度数据
        right_bar = np.interp(right_angle, (20, 170), (200, 400))
        # 使用opencv画进度条和写右手肘弯曲的程度
        cv2.rectangle(img, (1200, 200), (1220, 400), (0, 255, 0), 3)
        cv2.rectangle(img, (1200, int(right_bar)), (1220, 400), (0, 255, 0), cv2.FILLED)
        cv2.putText(img, str(int(right_per)) + '%', (1190, 450), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)

        # 左手肘的角度
        left_angle = detector.find_angle(img, 11, 13, 15)
        left_per = np.interp(left_angle, (20, 170), (100, 0))
        left_bar = np.interp(left_angle, (20, 170), (200, 400))
        cv2.rectangle(img, (500, 200), (520, 400), (0, 255, 0), 3)
        cv2.rectangle(img, (500, int(left_bar)), (520, 400), (0, 255, 0), cv2.FILLED)
        cv2.putText(img, str(int(left_per)) + '%', (490, 450), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)

        # 检测个数,我这里设置的是从20%做到80%,就认为是一个
        if (left_per >= 80 and right_per >= 80):
            if dir == 0:
                count = count + 0.5
                dir = 1
        if (left_per <= 20 and right_per <= 20):
            if dir == 1:
                count = count + 0.5
                dir = 0

        # 在视频上显示完成个数
        cv2.putText(img, str(int(count)), (1000, 100), cv2.FONT_HERSHEY_SIMPLEX, 3, (0, 255, 255), 4)

        cv2.imshow('Image', img)
    else:
        break
    k = cv2.waitKey(1)
    if k == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()

Запустив код, мы увидим изменение угла 2 локтей и 2 индикаторов выполнения, а также количество выполнений, которые можно использовать для определения количества выполнений стандартных подтягиваний.

image-20210422115824724.png

image-20210422115931135.png

image-20210422115850468.png

image-20210422115958771.png