Распознавание жестов OpenCV

компьютерное зрение

Программно-аппаратная среда

  • ubuntu 18.04 64bit
  • anaconda with python 3.7
  • nvidia gtx 1070Ti
  • opencv 4.2.0

предисловие

Модель алгоритма, используемая в этой статье,CMU Perceptual Computing LabБиблиотека с открытым исходным кодом, которая объединяет обнаружение ключевых точек человека, лица и руки.OpenPose, этот проект был представлен ранее. Эта статья будет вOpenCVиспользуется вdnnвызов модуляOpenPoseРучное обнаружение ключевых точек в технике (hand pose estimation) для реализации распознавания жестов.

основная среда

образец кода

import cv2
import time
import numpy as np


protoFile = "pose_deploy.prototxt"
weightsFile = "pose_iter_102000.caffemodel"
nPoints = 22
POSE_PAIRS = [ [0,1],[1,2],[2,3],[3,4],[0,5],[5,6],[6,7],[7,8],[0,9],[9,10],[10,11],[11,12],[0,13],[13,14],[14,15],[15,16],[0,17],[17,18],[18,19],[19,20] ]

threshold = 0.2

# 读取内置摄像头或者usb摄像头
cap = cv2.VideoCapture(0)
hasFrame, frame = cap.read()

frameWidth = frame.shape[1]
frameHeight = frame.shape[0]

aspect_ratio = frameWidth/frameHeight

inHeight = 368
inWidth = int(((aspect_ratio*inHeight)*8)//8)

# 处理结果保存成视频
vid_writer = cv2.VideoWriter('output.avi',cv2.VideoWriter_fourcc('M','J','P','G'), 15, (frame.shape[1],frame.shape[0]))

# 加载模型权重
net = cv2.dnn.readNetFromCaffe(protoFile, weightsFile)
k = 0
while True:
    k+=1
    t = time.time()
    # 读取每一帧的数据
    hasFrame, frame = cap.read()
    frameCopy = np.copy(frame)
    if not hasFrame:
        cv2.waitKey()
        break
    
    # blobFromImage将图像转为blob
    inpBlob = cv2.dnn.blobFromImage(frame, 1.0 / 255, (inWidth, inHeight),
                              (0, 0, 0), swapRB=False, crop=False)

    net.setInput(inpBlob)

    # forward实现网络推断
    # 模型可生成22个关键点,其中21个点是人手部的,第22个点代表着背景
    output = net.forward()

    print("forward = {}".format(time.time() - t))

    # Empty list to store the detected keypoints
    points = []

    for i in range(nPoints):
        probMap = output[0, i, :, :]
        probMap = cv2.resize(probMap, (frameWidth, frameHeight))

        # 找到精确位置
        minVal, prob, minLoc, point = cv2.minMaxLoc(probMap)

        if prob > threshold :
            cv2.circle(frameCopy, (int(point[0]), int(point[1])), 6, (0, 255, 255), thickness=-1, lineType=cv2.FILLED)
            cv2.putText(frameCopy, "{}".format(i), (int(point[0]), int(point[1])), cv2.FONT_HERSHEY_SIMPLEX, .8, (0, 0, 255), 2, lineType=cv2.LINE_AA)

            points.append((int(point[0]), int(point[1])))
        else :
            points.append(None)

    # 画出关键点
    for pair in POSE_PAIRS:
        partA = pair[0]
        partB = pair[1]

        if points[partA] and points[partB]:
            cv2.line(frame, points[partA], points[partB], (0, 255, 255), 2, lineType=cv2.LINE_AA)
            cv2.circle(frame, points[partA], 5, (0, 0, 255), thickness=-1, lineType=cv2.FILLED)
            cv2.circle(frame, points[partB], 5, (0, 0, 255), thickness=-1, lineType=cv2.FILLED)

    print("Time Taken for frame = {}".format(time.time() - t))

    cv2.imshow('webcam', frame)
    # 监听键盘事件
    key = cv2.waitKey(1)
    if key == 27:
        break

    print("total = {}".format(time.time() - t))

    vid_writer.write(frame)

vid_writer.release()

Запустите приведенный выше код, используя локальныйusbКамера для обнаружения жестов

opencv_hand

opencv_hand

Загрузка модели

Ссылка на сетевой диск Baidu:https://pan.baidu.com/s/17QGpualKBdtl4uvbYzIWLg,Код извлечения:3ljn