Соси кошек вместе с кодом! Эта статья участвует【Эссе "Мяу Звезды"】
1. Сегментация основных и дополнительных изображений кошек на основе PaddleSeg.
1. Введение в PaddleSeg
PaddleSeg — это комплект для разработки сквозной сегментации изображений, разработанный на основе PaddlePaddle, который охватывает большое количество высококачественных моделей сегментации в различных направлениях, таких как высокоточные и облегченные. Благодаря модульной конструкции он предоставляет два метода применения: управление конфигурацией и вызов API, чтобы помочь разработчикам легче завершить весь процесс приложений сегментации изображений от обучения до развертывания.
характеристика
- Высокоточная модель: на основе самостоятельно разработанного Baidu обучения Semi-Supervised Label Knowledge Distillation (SSLD) для получения высокоточной магистральной сети в сочетании с передовой технологией сегментации предоставляется более 50 высококачественных моделей предварительного обучения, которые лучше, чем другие реализации с открытым исходным кодом.
- Модульная конструкция: поддержка более 15 основных сетей сегментации в сочетании с различными компонентами, такими как стратегии улучшения данных, магистральные сети и функции потерь в модульной конструкции, позволяет разработчикам собирать различные конфигурации обучения на основе реальных сценариев приложений для удовлетворения различных требований к производительности и точности.
- Высокая производительность: поддержка многопроцессорного асинхронного ввода-вывода, параллельного обучения с несколькими картами, оценки и других стратегий ускорения в сочетании с функцией оптимизации памяти базовой платформы Flying Paddle может значительно снизить накладные расходы на обучение разделенной модели, позволяя разработчикам чтобы снизить затраты и повысить эффективность полного обучения сегментации изображений.
! git clone https://gitee.com/paddlepaddle/PaddleSeg.git --depth=1
Cloning into 'PaddleSeg'...
remote: Enumerating objects: 1589, done.[K
remote: Counting objects: 100% (1589/1589), done.[K
remote: Compressing objects: 100% (1354/1354), done.[K
remote: Total 1589 (delta 309), reused 1117 (delta 142), pack-reused 0[K
Receiving objects: 100% (1589/1589), 88.49 MiB | 5.57 MiB/s, done.
Resolving deltas: 100% (309/309), done.
Checking connectivity... done.
2. Производство набора данных
# 解压缩数据集
!mkdir dataset
!tar -xvf data/data50154/images.tar.gz -C dataset/
!tar -xvf data/data50154/annotations.tar.gz -C dataset/
# 删除list.txt文件头
import pandas as pd
import shutil
import os
# Image CLASS-ID SPECIES BREED ID
# ID: 1:37 Class ids
# SPECIES: 1:Cat 2:Dog
# BREED ID: 1-25:Cat 1:12:Dog
# All images with 1st letter as captial are cat images
# images with small first letter are dog images
# ._Abyssinian_100.png
def copyfile(animal, filename):
# image\label列表
file_list = []
image_file = filename + '.jpg'
label_file = filename + '.png'
if os.path.exists(os.path.join('dataset/images', image_file)):
shutil.copy(os.path.join('dataset/images', image_file), os.path.join(f'{animal}/images', image_file))
shutil.copy(os.path.join('dataset/annotations/trimaps', label_file),
os.path.join(f'{animal}/labels', label_file))
temp = os.path.join('images/', image_file) + ' ' + os.path.join('labels/',label_file) + '\n'
file_list.append(temp)
with open(os.path.join(animal, animal + '.txt'), 'a') as f:
f.writelines(file_list)
if __name__ == "__main__":
data = pd.read_csv('dataset/annotations/list.txt', header=None, sep=' ')
data.head()
cat = data[data[2] == 1]
dog = data[data[2] == 2]
for item in cat[0]:
copyfile('cat', item)
for item in dog[0]:
copyfile('dog', item)
# 删除无用数据
!rm dataset/ -rf
3. Обучите пользовательский набор данных
3.1 Структура файла
├── cat.txt
├── images
│ ├── Abyssinian_100.jpg
│ ├── Abyssinian_101.jpg
│ ├── ...
├── labels
│ ├── Abyssinian_100.png
│ ├── Abyssinian_101.png
│ ├── ...
3.2 содержимое cat.txt:
images/Abyssinian_1.jpg labels/Abyssinian_1.png
images/Abyssinian_10.jpg labels/Abyssinian_10.png
images/Abyssinian_100.jpg labels/Abyssinian_100.png
...
3. Просмотр данных
%cd ~
from PIL import Image
img=Image.open('cat/images/Abyssinian_101.jpg')
print(img)
img
/home/aistudio
<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=450x313 at 0x7F157A098A90>
img=Image.open('cat/images/Abyssinian_123.jpg')
print(img)
img
<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=500x333 at 0x7F174201AC90>
4. Обработка этикеток
Этикетки отсортированы с 0, данные этого проекта взяты из Oxford-IIIT PetWoohoo.robots.O-type.AC.UK/~v GG/data/afraid…Набор данных Pet, набор данных закодирован с 1, поэтому его необходимо перекодировать. Фон установлен на 0, а изображение установлено на 1.
import pandas as pd
import os
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
def re_label(filename):
img = plt.imread(filename) * 255.0
img_label = np.zeros((img.shape[0], img.shape[1]), np.uint8)
for i in range(img.shape[0]):
for j in range(img.shape[1]):
value = img[i, j]
if value == 2:
img_label[i, j] = 1
label0 = Image.fromarray(np.uint8(img_label))
label0.save( filename)
data=pd.read_csv("cat/cat.txt", header=None, sep=' ')
for item in data[1]:
re_label(os.path.join('cat', item))
print('处理完毕!')
处理完毕!
2. Предварительная обработка набора данных
import os
from sklearn.model_selection import train_test_split
import pandas as pd
def break_data(target, rate=0.2):
origin_dataset = pd.read_csv("cat/cat.txt", header=None, sep=' ') # 加入参数
train_data, test_data = train_test_split(origin_dataset, test_size=rate)
train_data,eval_data=train_test_split(train_data, test_size=rate)
train_filename = os.path.join(target, 'train.txt')
test_filename = os.path.join(target, 'test.txt')
eval_filename = os.path.join(target, 'eval.txt')
train_data.to_csv(train_filename, index=False, sep=' ', header=None)
test_data.to_csv(test_filename, index=False, sep=' ', header=None)
eval_data.to_csv(eval_filename, index=False, sep=' ', header=None)
print('train_data:',len(train_data))
print('test_data:',len(test_data))
print('eval_data:',len(eval_data))
if __name__ == '__main__':
break_data(target='cat', rate=0.2)
train_data: 1516
test_data: 475
eval_data: 380
# 查看
!head cat/train.txt
images/Bengal_173.jpg labels/Bengal_173.png
images/Siamese_179.jpg labels/Siamese_179.png
images/British_Shorthair_201.jpg labels/British_Shorthair_201.png
images/Russian_Blue_60.jpg labels/Russian_Blue_60.png
images/British_Shorthair_93.jpg labels/British_Shorthair_93.png
images/British_Shorthair_26.jpg labels/British_Shorthair_26.png
images/British_Shorthair_209.jpg labels/British_Shorthair_209.png
images/British_Shorthair_101.jpg labels/British_Shorthair_101.png
images/British_Shorthair_269.jpg labels/British_Shorthair_269.png
images/Ragdoll_59.jpg labels/Ragdoll_59.png
3. Конфигурация
!cp PaddleSeg/configs/quick_start/bisenet_optic_disc_512x512_1k.yml ~/bisenet_optic_disc_512x512_1k.yml
Измените bisenet_optic_disc_512x512_1k.yml, обратите внимание на следующие моменты:
- 1. Конфигурация пути набора данных
- 2.num_classes настройка, фон не учитывается
- 3.трансформирует настройки
- 4.установка потери
batch_size: 256
iters: 500
train_dataset:
type: Dataset
dataset_root: /home/aistudio/cat/
train_path: /home/aistudio/cat/train.txt
num_classes: 2
transforms:
- type: ResizeStepScaling
min_scale_factor: 0.5
max_scale_factor: 2.0
scale_step_size: 0.25
- type: RandomPaddingCrop
crop_size: [224, 224]
- type: RandomHorizontalFlip
- type: RandomDistort
brightness_range: 0.4
contrast_range: 0.4
saturation_range: 0.4
- type: Normalize
mode: train
val_dataset:
type: Dataset
dataset_root: /home/aistudio/cat/
val_path: /home/aistudio/cat/eval.txt
num_classes: 2
transforms:
- type: Normalize
mode: val
optimizer:
type: sgd
momentum: 0.9
weight_decay: 0.0005
lr_scheduler:
type: PolynomialDecay
learning_rate: 0.05
end_lr: 0
power: 0.9
loss:
types:
- type: CrossEntropyLoss
coef: [1]
model:
type: FCN
backbone:
type: HRNet_W18_Small_V1
align_corners: False
num_classes: 2
pretrained: Null
4. Обучение
%cd ~/PaddleSeg/
! python train.py --config ../bisenet_optic_disc_512x512_1k.yml\
--do_eval \
--use_vdl \
--save_interval 50 \
--save_dir output
/home/aistudio/PaddleSeg
2021-11-03 00:21:10 [INFO]
------------Environment Information-------------
platform: Linux-4.4.0-150-generic-x86_64-with-debian-stretch-sid
Python: 3.7.4 (default, Aug 13 2019, 20:35:49) [GCC 7.3.0]
Paddle compiled with cuda: True
NVCC: Cuda compilation tools, release 10.1, V10.1.243
cudnn: 7.6
GPUs used: 1
CUDA_VISIBLE_DEVICES: None
GPU: ['GPU 0: Tesla V100-SXM2-32GB']
GCC: gcc (Ubuntu 7.5.0-3ubuntu1~16.04) 7.5.0
PaddlePaddle: 2.1.2
OpenCV: 4.1.1
------------------------------------------------
2021-11-03 00:21:10 [INFO]
---------------Config Information---------------
batch_size: 256
iters: 500
loss:
coef:
- 1
types:
- ignore_index: 255
type: CrossEntropyLoss
lr_scheduler:
end_lr: 0
learning_rate: 0.05
power: 0.9
type: PolynomialDecay
model:
backbone:
align_corners: false
type: HRNet_W18_Small_V1
num_classes: 2
pretrained: null
type: FCN
optimizer:
momentum: 0.9
type: sgd
weight_decay: 0.0005
train_dataset:
dataset_root: /home/aistudio/cat/
mode: train
num_classes: 2
train_path: /home/aistudio/cat/train.txt
transforms:
- max_scale_factor: 2.0
min_scale_factor: 0.5
scale_step_size: 0.25
type: ResizeStepScaling
- crop_size:
- 224
- 224
type: RandomPaddingCrop
- type: RandomHorizontalFlip
- brightness_range: 0.4
contrast_range: 0.4
saturation_range: 0.4
type: RandomDistort
- type: Normalize
type: Dataset
val_dataset:
dataset_root: /home/aistudio/cat/
mode: val
num_classes: 2
transforms:
- type: Normalize
type: Dataset
val_path: /home/aistudio/cat/eval.txt
------------------------------------------------
W1103 00:21:10.323276 1991 device_context.cc:404] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 10.1, Runtime API Version: 10.1
W1103 00:21:10.323315 1991 device_context.cc:422] device: 0, cuDNN Version: 7.6.
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/nn/layer/norm.py:641: UserWarning: When training, we now always track global mean and variance.
"When training, we now always track global mean and variance.")
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/math_op_patch.py:239: UserWarning: The dtype of left and right variables are not the same, left dtype is paddle.float32, but right dtype is paddle.int64, the right dtype will convert to paddle.float32
format(lhs_dtype, rhs_dtype, lhs_dtype))
2021-11-03 00:22:00 [INFO] [TRAIN] epoch: 2, iter: 10/500, loss: 0.6637, lr: 0.049189, batch_cost: 4.0507, reader_cost: 3.05866, ips: 63.1989 samples/sec | ETA 00:33:04
2021-11-03 00:22:39 [INFO] [TRAIN] epoch: 4, iter: 20/500, loss: 0.6265, lr: 0.048287, batch_cost: 3.9186, reader_cost: 2.92979, ips: 65.3300 samples/sec | ETA 00:31:20
2021-11-03 00:23:19 [INFO] [TRAIN] epoch: 6, iter: 30/500, loss: 0.6230, lr: 0.047382, batch_cost: 3.9892, reader_cost: 2.99757, ips: 64.1727 samples/sec | ETA 00:31:14
2021-11-03 00:24:01 [INFO] [TRAIN] epoch: 8, iter: 40/500, loss: 0.6111, lr: 0.046476, batch_cost: 4.1665, reader_cost: 3.17214, ips: 61.4422 samples/sec | ETA 00:31:56
2021-11-03 00:24:41 [INFO] [TRAIN] epoch: 10, iter: 50/500, loss: 0.6139, lr: 0.045568, batch_cost: 3.9749, reader_cost: 2.98335, ips: 64.4047 samples/sec | ETA 00:29:48
2021-11-03 00:24:41 [INFO] Start evaluating (total_samples: 380, total_iters: 380)...
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/math_op_patch.py:239: UserWarning: The dtype of left and right variables are not the same, left dtype is paddle.int32, but right dtype is paddle.bool, the right dtype will convert to paddle.int32
format(lhs_dtype, rhs_dtype, lhs_dtype))
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/math_op_patch.py:239: UserWarning: The dtype of left and right variables are not the same, left dtype is paddle.int64, but right dtype is paddle.bool, the right dtype will convert to paddle.int64
format(lhs_dtype, rhs_dtype, lhs_dtype))
380/380 [==============================] - 16s 41ms/step - batch_cost: 0.0412 - reader cost: 0.001
2021-11-03 00:24:57 [INFO] [EVAL] #Images: 380 mIoU: 0.3135 Acc: 0.5048 Kappa: 0.1320
2021-11-03 00:24:57 [INFO] [EVAL] Class IoU:
[0.4423 0.1847]
2021-11-03 00:24:57 [INFO] [EVAL] Class Acc:
[0.449 0.8941]
2021-11-03 00:24:57 [INFO] [EVAL] The model with the best validation mIoU (0.3135) was saved at iter 50.
2021-11-03 00:25:36 [INFO] [TRAIN] epoch: 12, iter: 60/500, loss: 0.5969, lr: 0.044657, batch_cost: 3.9748, reader_cost: 2.99298, ips: 64.4065 samples/sec | ETA 00:29:08
2021-11-03 00:26:16 [INFO] [TRAIN] epoch: 14, iter: 70/500, loss: 0.5787, lr: 0.043745, batch_cost: 3.9955, reader_cost: 3.00726, ips: 64.0719 samples/sec | ETA 00:28:38
2021-11-03 00:26:56 [INFO] [TRAIN] epoch: 16, iter: 80/500, loss: 0.5651, lr: 0.042830, batch_cost: 3.9896, reader_cost: 3.00293, ips: 64.1663 samples/sec | ETA 00:27:55
2021-11-03 00:27:36 [INFO] [TRAIN] epoch: 18, iter: 90/500, loss: 0.5672, lr: 0.041914, batch_cost: 4.0269, reader_cost: 3.04538, ips: 63.5724 samples/sec | ETA 00:27:31
2021-11-03 00:28:17 [INFO] [TRAIN] epoch: 20, iter: 100/500, loss: 0.5724, lr: 0.040995, batch_cost: 4.0466, reader_cost: 3.06060, ips: 63.2635 samples/sec | ETA 00:26:58
2021-11-03 00:28:17 [INFO] Start evaluating (total_samples: 380, total_iters: 380)...
380/380 [==============================] - 16s 41ms/step - batch_cost: 0.0412 - reader cost: 0.001
2021-11-03 00:28:33 [INFO] [EVAL] #Images: 380 mIoU: 0.4029 Acc: 0.5850 Kappa: 0.2497
2021-11-03 00:28:33 [INFO] [EVAL] Class IoU:
[0.4822 0.3236]
2021-11-03 00:28:33 [INFO] [EVAL] Class Acc:
[0.4942 0.9107]
2021-11-03 00:28:33 [INFO] [EVAL] The model with the best validation mIoU (0.4029) was saved at iter 100.
2021-11-03 00:29:12 [INFO] [TRAIN] epoch: 22, iter: 110/500, loss: 0.5607, lr: 0.040073, batch_cost: 3.9727, reader_cost: 2.98274, ips: 64.4393 samples/sec | ETA 00:25:49
2021-11-03 00:29:52 [INFO] [TRAIN] epoch: 24, iter: 120/500, loss: 0.5449, lr: 0.039150, batch_cost: 3.9292, reader_cost: 2.94368, ips: 65.1530 samples/sec | ETA 00:24:53
2021-11-03 00:30:31 [INFO] [TRAIN] epoch: 26, iter: 130/500, loss: 0.5525, lr: 0.038224, batch_cost: 3.9716, reader_cost: 2.98407, ips: 64.4574 samples/sec | ETA 00:24:29
2021-11-03 00:31:11 [INFO] [TRAIN] epoch: 28, iter: 140/500, loss: 0.5465, lr: 0.037295, batch_cost: 3.9985, reader_cost: 3.00955, ips: 64.0240 samples/sec | ETA 00:23:59
2021-11-03 00:31:51 [INFO] [TRAIN] epoch: 30, iter: 150/500, loss: 0.5349, lr: 0.036364, batch_cost: 3.9796, reader_cost: 2.99245, ips: 64.3279 samples/sec | ETA 00:23:12
2021-11-03 00:31:51 [INFO] Start evaluating (total_samples: 380, total_iters: 380)...
380/380 [==============================] - 16s 43ms/step - batch_cost: 0.0424 - reader cost: 0.001
2021-11-03 00:32:07 [INFO] [EVAL] #Images: 380 mIoU: 0.4709 Acc: 0.6444 Kappa: 0.3430
2021-11-03 00:32:07 [INFO] [EVAL] Class IoU:
[0.5197 0.422 ]
2021-11-03 00:32:07 [INFO] [EVAL] Class Acc:
[0.535 0.9247]
2021-11-03 00:32:07 [INFO] [EVAL] The model with the best validation mIoU (0.4709) was saved at iter 150.
2021-11-03 00:32:47 [INFO] [TRAIN] epoch: 32, iter: 160/500, loss: 0.5217, lr: 0.035430, batch_cost: 3.9988, reader_cost: 3.01584, ips: 64.0188 samples/sec | ETA 00:22:39
2021-11-03 00:33:28 [INFO] [TRAIN] epoch: 34, iter: 170/500, loss: 0.5302, lr: 0.034494, batch_cost: 4.0304, reader_cost: 3.03914, ips: 63.5179 samples/sec | ETA 00:22:10
2021-11-03 00:34:07 [INFO] [TRAIN] epoch: 36, iter: 180/500, loss: 0.5218, lr: 0.033555, batch_cost: 3.9072, reader_cost: 2.91663, ips: 65.5197 samples/sec | ETA 00:20:50
2021-11-03 00:34:47 [INFO] [TRAIN] epoch: 38, iter: 190/500, loss: 0.5239, lr: 0.032612, batch_cost: 3.9990, reader_cost: 3.00959, ips: 64.0163 samples/sec | ETA 00:20:39
2021-11-03 00:35:27 [INFO] [TRAIN] epoch: 40, iter: 200/500, loss: 0.5226, lr: 0.031667, batch_cost: 3.9884, reader_cost: 3.00057, ips: 64.1854 samples/sec | ETA 00:19:56
2021-11-03 00:35:27 [INFO] Start evaluating (total_samples: 380, total_iters: 380)...
380/380 [==============================] - 16s 41ms/step - batch_cost: 0.0410 - reader cost: 0.00
2021-11-03 00:35:42 [INFO] [EVAL] #Images: 380 mIoU: 0.4626 Acc: 0.6373 Kappa: 0.3317
2021-11-03 00:35:42 [INFO] [EVAL] Class IoU:
[0.515 0.4102]
2021-11-03 00:35:42 [INFO] [EVAL] Class Acc:
[0.5298 0.9236]
2021-11-03 00:35:42 [INFO] [EVAL] The model with the best validation mIoU (0.4709) was saved at iter 150.
2021-11-03 00:36:22 [INFO] [TRAIN] epoch: 42, iter: 210/500, loss: 0.4973, lr: 0.030719, batch_cost: 3.9429, reader_cost: 2.95770, ips: 64.9269 samples/sec | ETA 00:19:03
2021-11-03 00:37:01 [INFO] [TRAIN] epoch: 44, iter: 220/500, loss: 0.5054, lr: 0.029767, batch_cost: 3.9474, reader_cost: 2.95505, ips: 64.8523 samples/sec | ETA 00:18:25
2021-11-03 00:37:41 [INFO] [TRAIN] epoch: 46, iter: 230/500, loss: 0.5073, lr: 0.028812, batch_cost: 3.9892, reader_cost: 2.99883, ips: 64.1738 samples/sec | ETA 00:17:57
2021-11-03 00:38:21 [INFO] [TRAIN] epoch: 48, iter: 240/500, loss: 0.5048, lr: 0.027853, batch_cost: 3.9480, reader_cost: 2.96041, ips: 64.8430 samples/sec | ETA 00:17:06
2021-11-03 00:39:01 [INFO] [TRAIN] epoch: 50, iter: 250/500, loss: 0.4908, lr: 0.026891, batch_cost: 3.9883, reader_cost: 3.00040, ips: 64.1876 samples/sec | ETA 00:16:37
2021-11-03 00:39:01 [INFO] Start evaluating (total_samples: 380, total_iters: 380)...
380/380 [==============================] - 16s 41ms/step - batch_cost: 0.0410 - reader cost: 0.001
2021-11-03 00:39:16 [INFO] [EVAL] #Images: 380 mIoU: 0.4518 Acc: 0.6282 Kappa: 0.3179
2021-11-03 00:39:16 [INFO] [EVAL] Class IoU:
[0.51 0.3936]
2021-11-03 00:39:16 [INFO] [EVAL] Class Acc:
[0.5231 0.9268]
2021-11-03 00:39:16 [INFO] [EVAL] The model with the best validation mIoU (0.4709) was saved at iter 150.
2021-11-03 00:39:55 [INFO] [TRAIN] epoch: 52, iter: 260/500, loss: 0.5051, lr: 0.025925, batch_cost: 3.9250, reader_cost: 2.92987, ips: 65.2232 samples/sec | ETA 00:15:41
2021-11-03 00:40:36 [INFO] [TRAIN] epoch: 54, iter: 270/500, loss: 0.4934, lr: 0.024954, batch_cost: 4.0248, reader_cost: 3.03510, ips: 63.6059 samples/sec | ETA 00:15:25
2021-11-03 00:41:16 [INFO] [TRAIN] epoch: 56, iter: 280/500, loss: 0.4881, lr: 0.023980, batch_cost: 3.9854, reader_cost: 2.99336, ips: 64.2341 samples/sec | ETA 00:14:36
2021-11-03 00:41:55 [INFO] [TRAIN] epoch: 58, iter: 290/500, loss: 0.4767, lr: 0.023001, batch_cost: 3.9613, reader_cost: 2.97126, ips: 64.6258 samples/sec | ETA 00:13:51
2021-11-03 00:42:36 [INFO] [TRAIN] epoch: 60, iter: 300/500, loss: 0.4770, lr: 0.022018, batch_cost: 4.0457, reader_cost: 3.05480, ips: 63.2773 samples/sec | ETA 00:13:29
2021-11-03 00:42:36 [INFO] Start evaluating (total_samples: 380, total_iters: 380)...
380/380 [==============================] - 15s 41ms/step - batch_cost: 0.0405 - reader cost: 0.00
2021-11-03 00:42:51 [INFO] [EVAL] #Images: 380 mIoU: 0.5178 Acc: 0.6839 Kappa: 0.4066
2021-11-03 00:42:51 [INFO] [EVAL] Class IoU:
[0.5472 0.4884]
2021-11-03 00:42:51 [INFO] [EVAL] Class Acc:
[0.5666 0.9267]
2021-11-03 00:42:51 [INFO] [EVAL] The model with the best validation mIoU (0.5178) was saved at iter 300.
2021-11-03 00:43:31 [INFO] [TRAIN] epoch: 62, iter: 310/500, loss: 0.4763, lr: 0.021029, batch_cost: 3.9940, reader_cost: 3.00568, ips: 64.0955 samples/sec | ETA 00:12:38
2021-11-03 00:44:11 [INFO] [TRAIN] epoch: 64, iter: 320/500, loss: 0.4769, lr: 0.020036, batch_cost: 4.0372, reader_cost: 3.04802, ips: 63.4096 samples/sec | ETA 00:12:06
2021-11-03 00:44:51 [INFO] [TRAIN] epoch: 66, iter: 330/500, loss: 0.4745, lr: 0.019037, batch_cost: 3.9867, reader_cost: 3.00122, ips: 64.2138 samples/sec | ETA 00:11:17
2021-11-03 00:45:32 [INFO] [TRAIN] epoch: 68, iter: 340/500, loss: 0.4768, lr: 0.018032, batch_cost: 4.0501, reader_cost: 3.06707, ips: 63.2086 samples/sec | ETA 00:10:48
2021-11-03 00:46:12 [INFO] [TRAIN] epoch: 70, iter: 350/500, loss: 0.4729, lr: 0.017021, batch_cost: 3.9921, reader_cost: 3.00525, ips: 64.1261 samples/sec | ETA 00:09:58
2021-11-03 00:46:12 [INFO] Start evaluating (total_samples: 380, total_iters: 380)...
380/380 [==============================] - 16s 42ms/step - batch_cost: 0.0418 - reader cost: 0.001
2021-11-03 00:46:28 [INFO] [EVAL] #Images: 380 mIoU: 0.5345 Acc: 0.6975 Kappa: 0.4282
2021-11-03 00:46:28 [INFO] [EVAL] Class IoU:
[0.5561 0.513 ]
2021-11-03 00:46:28 [INFO] [EVAL] Class Acc:
[0.5791 0.9217]
2021-11-03 00:46:28 [INFO] [EVAL] The model with the best validation mIoU (0.5345) was saved at iter 350.
2021-11-03 00:47:07 [INFO] [TRAIN] epoch: 72, iter: 360/500, loss: 0.4644, lr: 0.016003, batch_cost: 3.9630, reader_cost: 2.97853, ips: 64.5982 samples/sec | ETA 00:09:14
2021-11-03 00:47:48 [INFO] [TRAIN] epoch: 74, iter: 370/500, loss: 0.4519, lr: 0.014978, batch_cost: 4.0846, reader_cost: 3.09954, ips: 62.6738 samples/sec | ETA 00:08:51
2021-11-03 00:48:28 [INFO] [TRAIN] epoch: 76, iter: 380/500, loss: 0.4556, lr: 0.013945, batch_cost: 3.9984, reader_cost: 3.00991, ips: 64.0259 samples/sec | ETA 00:07:59
2021-11-03 00:49:08 [INFO] [TRAIN] epoch: 78, iter: 390/500, loss: 0.4544, lr: 0.012903, batch_cost: 3.9866, reader_cost: 2.99738, ips: 64.2149 samples/sec | ETA 00:07:18
2021-11-03 00:49:48 [INFO] [TRAIN] epoch: 80, iter: 400/500, loss: 0.4501, lr: 0.011852, batch_cost: 4.0086, reader_cost: 3.02056, ips: 63.8634 samples/sec | ETA 00:06:40
2021-11-03 00:49:48 [INFO] Start evaluating (total_samples: 380, total_iters: 380)...
380/380 [==============================] - 16s 41ms/step - batch_cost: 0.0413 - reader cost: 0.001
2021-11-03 00:50:04 [INFO] [EVAL] #Images: 380 mIoU: 0.4670 Acc: 0.6418 Kappa: 0.3409
2021-11-03 00:50:04 [INFO] [EVAL] Class IoU:
[0.521 0.4131]
2021-11-03 00:50:04 [INFO] [EVAL] Class Acc:
[0.5326 0.9392]
2021-11-03 00:50:04 [INFO] [EVAL] The model with the best validation mIoU (0.5345) was saved at iter 350.
2021-11-03 00:50:44 [INFO] [TRAIN] epoch: 82, iter: 410/500, loss: 0.4472, lr: 0.010790, batch_cost: 4.0134, reader_cost: 3.02345, ips: 63.7862 samples/sec | ETA 00:06:01
2021-11-03 00:51:24 [INFO] [TRAIN] epoch: 84, iter: 420/500, loss: 0.4489, lr: 0.009717, batch_cost: 3.9976, reader_cost: 3.01048, ips: 64.0384 samples/sec | ETA 00:05:19
2021-11-03 00:52:04 [INFO] [TRAIN] epoch: 86, iter: 430/500, loss: 0.4547, lr: 0.008630, batch_cost: 3.9965, reader_cost: 3.01080, ips: 64.0565 samples/sec | ETA 00:04:39
2021-11-03 00:52:44 [INFO] [TRAIN] epoch: 88, iter: 440/500, loss: 0.4307, lr: 0.007528, batch_cost: 3.9896, reader_cost: 3.00905, ips: 64.1663 samples/sec | ETA 00:03:59
2021-11-03 00:53:24 [INFO] [TRAIN] epoch: 90, iter: 450/500, loss: 0.4432, lr: 0.006408, batch_cost: 3.9713, reader_cost: 2.98270, ips: 64.4622 samples/sec | ETA 00:03:18
2021-11-03 00:53:24 [INFO] Start evaluating (total_samples: 380, total_iters: 380)...
380/380 [==============================] - 15s 41ms/step - batch_cost: 0.0406 - reader cost: 0.001
2021-11-03 00:53:39 [INFO] [EVAL] #Images: 380 mIoU: 0.5603 Acc: 0.7185 Kappa: 0.4641
2021-11-03 00:53:39 [INFO] [EVAL] Class IoU:
[0.5741 0.5465]
2021-11-03 00:53:39 [INFO] [EVAL] Class Acc:
[0.5981 0.9273]
2021-11-03 00:53:39 [INFO] [EVAL] The model with the best validation mIoU (0.5603) was saved at iter 450.
2021-11-03 00:54:19 [INFO] [TRAIN] epoch: 92, iter: 460/500, loss: 0.4341, lr: 0.005265, batch_cost: 3.9555, reader_cost: 2.97218, ips: 64.7195 samples/sec | ETA 00:02:38
2021-11-03 00:54:59 [INFO] [TRAIN] epoch: 94, iter: 470/500, loss: 0.4358, lr: 0.004094, batch_cost: 3.9997, reader_cost: 3.01172, ips: 64.0056 samples/sec | ETA 00:01:59
2021-11-03 00:55:39 [INFO] [TRAIN] epoch: 96, iter: 480/500, loss: 0.4367, lr: 0.002883, batch_cost: 4.0574, reader_cost: 3.07041, ips: 63.0940 samples/sec | ETA 00:01:21
2021-11-03 00:56:20 [INFO] [TRAIN] epoch: 98, iter: 490/500, loss: 0.4348, lr: 0.001611, batch_cost: 4.0403, reader_cost: 3.05264, ips: 63.3610 samples/sec | ETA 00:00:40
2021-11-03 00:57:00 [INFO] [TRAIN] epoch: 100, iter: 500/500, loss: 0.4246, lr: 0.000186, batch_cost: 4.0148, reader_cost: 3.02799, ips: 63.7634 samples/sec | ETA 00:00:00
2021-11-03 00:57:00 [INFO] Start evaluating (total_samples: 380, total_iters: 380)...
380/380 [==============================] - 16s 41ms/step - batch_cost: 0.0409 - reader cost: 0.00
2021-11-03 00:57:15 [INFO] [EVAL] #Images: 380 mIoU: 0.5772 Acc: 0.7321 Kappa: 0.4874
2021-11-03 00:57:15 [INFO] [EVAL] Class IoU:
[0.586 0.5684]
2021-11-03 00:57:15 [INFO] [EVAL] Class Acc:
[0.6112 0.9296]
2021-11-03 00:57:16 [INFO] [EVAL] The model with the best validation mIoU (0.5772) was saved at iter 500.
<class 'paddle.nn.layer.conv.Conv2D'>'s flops has been counted
<class 'paddle.nn.layer.norm.BatchNorm2D'>'s flops has been counted
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/tensor/creation.py:125: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
if data.dtype == np.object:
Total Flops: 795137504 Total Params: 1543954
5. Тест
!python val.py \
--config /home/aistudio/bisenet_optic_disc_512x512_1k.yml\
--model_path output/best_model/model.pdparams
2021-11-03 00:59:45 [INFO]
---------------Config Information---------------
batch_size: 256
iters: 500
loss:
coef:
- 1
types:
- type: CrossEntropyLoss
lr_scheduler:
end_lr: 0
learning_rate: 0.05
power: 0.9
type: PolynomialDecay
model:
backbone:
align_corners: false
type: HRNet_W18_Small_V1
num_classes: 2
pretrained: null
type: FCN
optimizer:
momentum: 0.9
type: sgd
weight_decay: 0.0005
train_dataset:
dataset_root: /home/aistudio/cat/
mode: train
num_classes: 2
train_path: /home/aistudio/cat/train.txt
transforms:
- max_scale_factor: 2.0
min_scale_factor: 0.5
scale_step_size: 0.25
type: ResizeStepScaling
- crop_size:
- 224
- 224
type: RandomPaddingCrop
- type: RandomHorizontalFlip
- brightness_range: 0.4
contrast_range: 0.4
saturation_range: 0.4
type: RandomDistort
- type: Normalize
type: Dataset
val_dataset:
dataset_root: /home/aistudio/cat/
mode: val
num_classes: 2
transforms:
- type: Normalize
type: Dataset
val_path: /home/aistudio/cat/eval.txt
------------------------------------------------
W1103 00:59:45.931428 9288 device_context.cc:404] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 10.1, Runtime API Version: 10.1
W1103 00:59:45.931474 9288 device_context.cc:422] device: 0, cuDNN Version: 7.6.
2021-11-03 00:59:55 [INFO] Loading pretrained model from output/best_model/model.pdparams
2021-11-03 00:59:57 [INFO] There are 363/363 variables loaded into FCN.
2021-11-03 00:59:57 [INFO] Loaded trained params of model successfully
2021-11-03 00:59:57 [INFO] Start evaluating (total_samples: 380, total_iters: 380)...
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/math_op_patch.py:239: UserWarning: The dtype of left and right variables are not the same, left dtype is paddle.int32, but right dtype is paddle.bool, the right dtype will convert to paddle.int32
format(lhs_dtype, rhs_dtype, lhs_dtype))
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/math_op_patch.py:239: UserWarning: The dtype of left and right variables are not the same, left dtype is paddle.int64, but right dtype is paddle.bool, the right dtype will convert to paddle.int64
format(lhs_dtype, rhs_dtype, lhs_dtype))
380/380 [==============================] - 16s 41ms/step - batch_cost: 0.0409 - reader cost: 0.002
2021-11-03 01:00:13 [INFO] [EVAL] #Images: 380 mIoU: 0.5772 Acc: 0.7321 Kappa: 0.4874
2021-11-03 01:00:13 [INFO] [EVAL] Class IoU:
[0.586 0.5684]
2021-11-03 01:00:13 [INFO] [EVAL] Class Acc:
[0.6112 0.9296]
6. Экспортируйте статическую модель
!python export.py \
--config /home/aistudio/bisenet_optic_disc_512x512_1k.yml\
--model_path output/best_model/model.pdparams
W1103 01:00:57.781003 9593 device_context.cc:404] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 10.1, Runtime API Version: 10.1
W1103 01:00:57.785893 9593 device_context.cc:422] device: 0, cuDNN Version: 7.6.
2021-11-03 01:01:09 [INFO] Loaded trained params of model successfully.
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/utils.py:77: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working
return (isinstance(seq, collections.Sequence) and
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/math_op_patch.py:322: UserWarning: /tmp/tmpiu3mi0oc.py:28
The behavior of expression A + B has been unified with elementwise_add(X, Y, axis=-1) from Paddle 2.0. If your code works well in the older versions but crashes in this version, try to use elementwise_add(X, Y, axis=0) instead of A + B. This transitional warning will be dropped in the future.
op_type, op_type, EXPRESSION_MAP[method_name]))
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/math_op_patch.py:322: UserWarning: /tmp/tmpn_6sfwjx.py:27
The behavior of expression A + B has been unified with elementwise_add(X, Y, axis=-1) from Paddle 2.0. If your code works well in the older versions but crashes in this version, try to use elementwise_add(X, Y, axis=0) instead of A + B. This transitional warning will be dropped in the future.
op_type, op_type, EXPRESSION_MAP[method_name]))
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/math_op_patch.py:322: UserWarning: /tmp/tmp2eo8_6gd.py:27
The behavior of expression A + B has been unified with elementwise_add(X, Y, axis=-1) from Paddle 2.0. If your code works well in the older versions but crashes in this version, try to use elementwise_add(X, Y, axis=0) instead of A + B. This transitional warning will be dropped in the future.
op_type, op_type, EXPRESSION_MAP[method_name]))
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/math_op_patch.py:322: UserWarning: /tmp/tmpwc3aqih6.py:27
The behavior of expression A + B has been unified with elementwise_add(X, Y, axis=-1) from Paddle 2.0. If your code works well in the older versions but crashes in this version, try to use elementwise_add(X, Y, axis=0) instead of A + B. This transitional warning will be dropped in the future.
op_type, op_type, EXPRESSION_MAP[method_name]))
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/math_op_patch.py:322: UserWarning: /tmp/tmp3i52fv6g.py:27
The behavior of expression A + B has been unified with elementwise_add(X, Y, axis=-1) from Paddle 2.0. If your code works well in the older versions but crashes in this version, try to use elementwise_add(X, Y, axis=0) instead of A + B. This transitional warning will be dropped in the future.
op_type, op_type, EXPRESSION_MAP[method_name]))
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/math_op_patch.py:322: UserWarning: /tmp/tmp331woke4.py:36
The behavior of expression A + B has been unified with elementwise_add(X, Y, axis=-1) from Paddle 2.0. If your code works well in the older versions but crashes in this version, try to use elementwise_add(X, Y, axis=0) instead of A + B. This transitional warning will be dropped in the future.
op_type, op_type, EXPRESSION_MAP[method_name]))
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/math_op_patch.py:322: UserWarning: /tmp/tmp331woke4.py:58
The behavior of expression A + B has been unified with elementwise_add(X, Y, axis=-1) from Paddle 2.0. If your code works well in the older versions but crashes in this version, try to use elementwise_add(X, Y, axis=0) instead of A + B. This transitional warning will be dropped in the future.
op_type, op_type, EXPRESSION_MAP[method_name]))
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/math_op_patch.py:322: UserWarning: /tmp/tmpt_4sfeo_.py:27
The behavior of expression A + B has been unified with elementwise_add(X, Y, axis=-1) from Paddle 2.0. If your code works well in the older versions but crashes in this version, try to use elementwise_add(X, Y, axis=0) instead of A + B. This transitional warning will be dropped in the future.
op_type, op_type, EXPRESSION_MAP[method_name]))
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/math_op_patch.py:322: UserWarning: /tmp/tmp64kisiuw.py:27
The behavior of expression A + B has been unified with elementwise_add(X, Y, axis=-1) from Paddle 2.0. If your code works well in the older versions but crashes in this version, try to use elementwise_add(X, Y, axis=0) instead of A + B. This transitional warning will be dropped in the future.
op_type, op_type, EXPRESSION_MAP[method_name]))
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/math_op_patch.py:322: UserWarning: /tmp/tmpv305ofe5.py:27
The behavior of expression A + B has been unified with elementwise_add(X, Y, axis=-1) from Paddle 2.0. If your code works well in the older versions but crashes in this version, try to use elementwise_add(X, Y, axis=0) instead of A + B. This transitional warning will be dropped in the future.
op_type, op_type, EXPRESSION_MAP[method_name]))
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/math_op_patch.py:322: UserWarning: /tmp/tmpo4s_zth8.py:27
The behavior of expression A + B has been unified with elementwise_add(X, Y, axis=-1) from Paddle 2.0. If your code works well in the older versions but crashes in this version, try to use elementwise_add(X, Y, axis=0) instead of A + B. This transitional warning will be dropped in the future.
op_type, op_type, EXPRESSION_MAP[method_name]))
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/math_op_patch.py:322: UserWarning: /tmp/tmpba82b2d2.py:27
The behavior of expression A + B has been unified with elementwise_add(X, Y, axis=-1) from Paddle 2.0. If your code works well in the older versions but crashes in this version, try to use elementwise_add(X, Y, axis=0) instead of A + B. This transitional warning will be dropped in the future.
op_type, op_type, EXPRESSION_MAP[method_name]))
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/math_op_patch.py:322: UserWarning: /tmp/tmps_4r1xg0.py:27
The behavior of expression A + B has been unified with elementwise_add(X, Y, axis=-1) from Paddle 2.0. If your code works well in the older versions but crashes in this version, try to use elementwise_add(X, Y, axis=0) instead of A + B. This transitional warning will be dropped in the future.
op_type, op_type, EXPRESSION_MAP[method_name]))
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/math_op_patch.py:322: UserWarning: /tmp/tmp_572s8qy.py:36
The behavior of expression A + B has been unified with elementwise_add(X, Y, axis=-1) from Paddle 2.0. If your code works well in the older versions but crashes in this version, try to use elementwise_add(X, Y, axis=0) instead of A + B. This transitional warning will be dropped in the future.
op_type, op_type, EXPRESSION_MAP[method_name]))
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/math_op_patch.py:322: UserWarning: /tmp/tmp_572s8qy.py:58
The behavior of expression A + B has been unified with elementwise_add(X, Y, axis=-1) from Paddle 2.0. If your code works well in the older versions but crashes in this version, try to use elementwise_add(X, Y, axis=0) instead of A + B. This transitional warning will be dropped in the future.
op_type, op_type, EXPRESSION_MAP[method_name]))
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/math_op_patch.py:322: UserWarning: /tmp/tmpyaadsihk.py:27
The behavior of expression A + B has been unified with elementwise_add(X, Y, axis=-1) from Paddle 2.0. If your code works well in the older versions but crashes in this version, try to use elementwise_add(X, Y, axis=0) instead of A + B. This transitional warning will be dropped in the future.
op_type, op_type, EXPRESSION_MAP[method_name]))
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/math_op_patch.py:322: UserWarning: /tmp/tmp0vdk9o9u.py:27
The behavior of expression A + B has been unified with elementwise_add(X, Y, axis=-1) from Paddle 2.0. If your code works well in the older versions but crashes in this version, try to use elementwise_add(X, Y, axis=0) instead of A + B. This transitional warning will be dropped in the future.
op_type, op_type, EXPRESSION_MAP[method_name]))
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/math_op_patch.py:322: UserWarning: /tmp/tmpiydq81o7.py:27
The behavior of expression A + B has been unified with elementwise_add(X, Y, axis=-1) from Paddle 2.0. If your code works well in the older versions but crashes in this version, try to use elementwise_add(X, Y, axis=0) instead of A + B. This transitional warning will be dropped in the future.
op_type, op_type, EXPRESSION_MAP[method_name]))
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/math_op_patch.py:322: UserWarning: /tmp/tmppw5nb4yl.py:27
The behavior of expression A + B has been unified with elementwise_add(X, Y, axis=-1) from Paddle 2.0. If your code works well in the older versions but crashes in this version, try to use elementwise_add(X, Y, axis=0) instead of A + B. This transitional warning will be dropped in the future.
op_type, op_type, EXPRESSION_MAP[method_name]))
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/math_op_patch.py:322: UserWarning: /tmp/tmpm9qyd52p.py:27
The behavior of expression A + B has been unified with elementwise_add(X, Y, axis=-1) from Paddle 2.0. If your code works well in the older versions but crashes in this version, try to use elementwise_add(X, Y, axis=0) instead of A + B. This transitional warning will be dropped in the future.
op_type, op_type, EXPRESSION_MAP[method_name]))
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/math_op_patch.py:322: UserWarning: /tmp/tmprgan86ed.py:27
The behavior of expression A + B has been unified with elementwise_add(X, Y, axis=-1) from Paddle 2.0. If your code works well in the older versions but crashes in this version, try to use elementwise_add(X, Y, axis=0) instead of A + B. This transitional warning will be dropped in the future.
op_type, op_type, EXPRESSION_MAP[method_name]))
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/math_op_patch.py:322: UserWarning: /tmp/tmp5f_8uade.py:27
The behavior of expression A + B has been unified with elementwise_add(X, Y, axis=-1) from Paddle 2.0. If your code works well in the older versions but crashes in this version, try to use elementwise_add(X, Y, axis=0) instead of A + B. This transitional warning will be dropped in the future.
op_type, op_type, EXPRESSION_MAP[method_name]))
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/math_op_patch.py:322: UserWarning: /tmp/tmp7ye2d18e.py:27
The behavior of expression A + B has been unified with elementwise_add(X, Y, axis=-1) from Paddle 2.0. If your code works well in the older versions but crashes in this version, try to use elementwise_add(X, Y, axis=0) instead of A + B. This transitional warning will be dropped in the future.
op_type, op_type, EXPRESSION_MAP[method_name]))
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/math_op_patch.py:322: UserWarning: /tmp/tmp_l3u6xjv.py:36
The behavior of expression A + B has been unified with elementwise_add(X, Y, axis=-1) from Paddle 2.0. If your code works well in the older versions but crashes in this version, try to use elementwise_add(X, Y, axis=0) instead of A + B. This transitional warning will be dropped in the future.
op_type, op_type, EXPRESSION_MAP[method_name]))
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/math_op_patch.py:322: UserWarning: /tmp/tmp_l3u6xjv.py:58
The behavior of expression A + B has been unified with elementwise_add(X, Y, axis=-1) from Paddle 2.0. If your code works well in the older versions but crashes in this version, try to use elementwise_add(X, Y, axis=0) instead of A + B. This transitional warning will be dropped in the future.
op_type, op_type, EXPRESSION_MAP[method_name]))
2021-11-03 01:01:11 [INFO] Model is saved in ./output.
7. Прогноз
deploy.yaml
Deploy:
model: model.pdmodel
params: model.pdiparams
transforms:
- type: Normalize
!pip install -e .
from PIL import Image
img=Image.open('/home/aistudio/cat/images/Siamese_79.jpg')
img
from PIL import Image
img=Image.open('/home/aistudio/PaddleSeg/output/Siamese_79.png')
img
!python deploy/python/infer.py --config output/deploy.yaml --image_path /home/aistudio/cat/images/Siamese_79.jpg